Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T23:28:07.305Z Has data issue: false hasContentIssue false

Fish hepatic glutathione-S-transferase activity is affected by the cestode parasites Schistocephalus solidus and Ligula intestinalis: evidence from field and laboratory studies

Published online by Cambridge University Press:  26 April 2011

SABRINA NADINE FRANK
Affiliation:
Department of Applied Zoology/Hydrobiology, University of Duisburg/Essen, Universitätsstrasse 5, D-45141 Essen, Germany Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany
STEFFEN FAUST
Affiliation:
Department of Applied Zoology/Hydrobiology, University of Duisburg/Essen, Universitätsstrasse 5, D-45141 Essen, Germany
MARTIN KALBE
Affiliation:
Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany
ACHIM TRUBIROHA
Affiliation:
Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany
WERNER KLOAS
Affiliation:
Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany
BERND SURES*
Affiliation:
Department of Applied Zoology/Hydrobiology, University of Duisburg/Essen, Universitätsstrasse 5, D-45141 Essen, Germany
*
*Corresponding author: Department of Applied Zoology/Hydrobiology, University of Duisburg/Essen, Universitätsstrasse 5, D-45141 Essen, Germany. Tel: +492011832617. Fax: +492011832179. E-mail: bernd.sures@uni-due.de

Summary

The activity of hepatic glutathione-S-transferase (GST) was analysed in 3 different fish species with respect to fish sex and infection with parasites. In both sexes of laboratory bred three-spined sticklebacks (Gasterosteus aculeatus) experimentally infected with Schistocephalus solidus (Cestoda), a significantly lower GST-activity was found for infected fish compared to control. After field sampling of roach (Rutilus rutilus) from Lake Müggelsee (MS) and the Reservoir Listertalsperre (LTS), the GST-activity showed significantly lower values for males infected with Ligula intestinalis from MS (25%) and for infected females from LTS (55%). L. intestinalis-infected female chub (Leuciscus cephalus) from LTS also appeared to have a lower GST-activity. Thus, it could be shown that the presence of parasites significantly affects GST-activity in different fish species resulting in a decreased GST-activity due to infection. Our results therefore emphasize the need for more integrative approaches in environmental pollution research to clearly identify the possible effects of parasites in an effort to develop biomarkers for evaluating environmental health.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barber, I. and Scharsack, J. P. (2010). The tree-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish. Parasitology 137, 411424.CrossRefGoogle ScholarPubMed
Björkblom, C., Högfors, E., Salste, L., Bergelin, E., Olsson, P. E., Katsiadaki, I. and Wiklund, T. (2009). Estrogenic and androgenic effects of municipal wastewater effluent on reproductive endpoint biomarkers in three-spined stickleback (Gasterosteus aculeatus). Environmental Toxicology and Chemistry 28, 10631071.CrossRefGoogle ScholarPubMed
Brophy, P. M. and Pritchard, D. I. (1992). Immunity to helminths: Ready to tip the biochemical balance? Parasitology Today 8, 419422.CrossRefGoogle ScholarPubMed
Dautremepuits, C., Betoulle, S. and Vernet, G. (2002). Antioxidant response modulated by copper in healthy or parasitized carp (Cyprinus carpio L.) by Ptychobothrium sp. (Cestoda). Biochimica et Biophysica Acta 1573, 48.CrossRefGoogle ScholarPubMed
Dautremepuits, C., Betoulle, S. and Vernet, G. (2003). Stimulation of antioxidant enzymes levels in carp (Cyprinus carpio L.) infected by Ptychobothrium sp. (Cestoda). Fish and Shellfish Immunology 15, 467471.CrossRefGoogle ScholarPubMed
Dowling, D. J., Hamilton, C. M., Donnelly, S., La Course, J., Brophy, P. M., Dalton, J. and O'Neill, S. M. (2010). Major secretory antigens of the helminth Fasciola hepatica activate a suppressive dendritic cell phenotype that attenuates Th17 cells but fails to activate Th2 immune responses. Infection Immunity 78, 793801.CrossRefGoogle ScholarPubMed
Driescher, E. H., Behrendt, H., Schellenberger, G. and Stellmacher, R. (1993). Lake Müggelsee and its environment – natural conditions and anthropogenic impacts. International Revue der Gesamten Hydrobiologie und Hydrogeographie 78, 327343.CrossRefGoogle Scholar
Dubinina, M. N. (1980). Tapeworms (Cestoda, Ligulidae) of the Fauna of the U.S.S.R. Amerind Publishing Co., New Dehli, India.Google Scholar
Dzik, J. M. (2006). Molecules released by helminth parasites involved in host colonization. Acta Biochimica Polonia 53, 3364.CrossRefGoogle ScholarPubMed
Eaton, D. L. and Bammler, T. K. (1999). Concise review of the glutathione S-transferases and their significance to toxicology. Toxicological Sciences 49, 156164.CrossRefGoogle ScholarPubMed
Galtier, P., Battaglia, A., Moré, J. and Franc, M. (1983). Impairment of drug metabolism by the liver in experimental fascioliasis in the rat. The Journal of Pharmacology and Pharmacology 35, 729733.CrossRefGoogle ScholarPubMed
Geraudie, P., Boulange-Leconte, C., Gerbon, M., Hinfrav, N., Brion, F. and Minier, C. (2010). Endocrine effects of the tapeworm Ligula intestinalis in its teleost host, the roach (Rutilus rutilus). Parasitology 137, 697704.CrossRefGoogle ScholarPubMed
Habig, W. H., Pabst, M. J. and Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry 249, 71307139.CrossRefGoogle ScholarPubMed
Havelkova, M., Blahova, J., Kroupova, H., Randak, T., Slatinska, I., Leontovycova, D., Grabic, R., Pospisil, R. and Svobodova, Z. (2008). Biomarkers of contaminant exposure in chub (Leuciscus cephalus L.) – Biomonitoring of major rivers in the Czech Republic. Sensors 8, 25892603.CrossRefGoogle ScholarPubMed
Hecker, M. and Karbe, L. (2005). Parasitism in fish – an endocrine modulator of ecological relevance? Aquatic Toxicology 72, 1952007.CrossRefGoogle Scholar
Hecker, M., Sanderson, J. T. and Karbe, L. (2007). Suppression of aromatase activity in populations of bream (Abramis brama) from the river Elbe, Germany. Chemosphere 66, 542552.CrossRefGoogle ScholarPubMed
Krca, S., Zaja, R., Calic, V., Terzic, S., Grubesic, M. S., Ahel, M. and Smital, T. (2007). Hepatic biomarker responses to organic contaminants in feral chub (Leuciscus cephalus) – laboratory characterization and field study in the Sava River, Croatia. Environmental Toxicololgy and Chemistry 26, 26202633.CrossRefGoogle ScholarPubMed
Kuris, A. M., Hechinger, R. F., Shaw, J. C., Whitney, K. L., Aguirre-Macedo, L., Boch, C. A., Dobson, A. P., Dunham, E. J., Fredensborg, B. L., Huspeni, T. C., Lorda, J., Mababa, L., Mancini, F. T., Mora, A. B., Pickering, M., Talhouk, N. L., Torchin, M. E. and Lafferty, K. D. (2008). Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature, London 454, 515518.CrossRefGoogle ScholarPubMed
Lamková, K., Simková, A., Paliková, M., Juradjida, P. and Lojek, A. (2007). Seasonal changes of immunocompetence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitology Research 101, 775789.CrossRefGoogle ScholarPubMed
Livingstone, D. R., Förlin, L. and George, S. G. (1994). Molecular biomarkers and toxic consequences of impact by organic pollution in aquatic organisms. In Water Quality and Stress Indicators in Marine and Freshwater Systems: Linking Levels of Organization (ed. Suthcliffe, D. W.), pp. 154171. Freshwater Biological Association, Ambleside, Cumberland, UK.Google Scholar
Machala, M., Ulrich, R., Neca, J., Vykusova, B., Kolarova, J., Machova, J. and Svobodova, Z. (2000). Biochemical monitoring of aquatic pollution: Indicators of dioxin-like toxicity and oxidative stress in the roach (Rutilus rutilus) and chub (Leuciscus cephalus) in the Skalice river. Veterinary Medicine 45, 5560.Google Scholar
Nachev, M. and Sures, B. (2009). The endohelminth fauna of barbel (Barbus barbus) correlates with water quality of the Danube River in Bulgaria. Parasitology 136, 545552.CrossRefGoogle ScholarPubMed
Pascoe, D. and Cram, P. (1977). The effect of parasitism on the toxicity of cadmium to the three-spined stickleback, Gasterosteus aculeatus. Journal of Fish Biology 10, 467472.CrossRefGoogle Scholar
Pascoe, D. and Woodworth, J. (1980). The effect of joint stress on sticklebacks. Zeitschrift für Parasitenkunde 62, 159163.CrossRefGoogle ScholarPubMed
Sanchez, W., Ait-Aissa, S., Palluel, O., Ditche, J. M. and Porcher, J. M. (2007). Preliminary investigation of multi-biomarker responses in three-spined stickleback (Gasterosteus aculeatus L.) sampled in contaminated streams. Ecotoxicology 16, 279287.CrossRefGoogle ScholarPubMed
Sanchez, W., Katsiadaki, I., Piccini, B., Ditche, J. M. and Porcher, J. M. (2008). Biomarker responses in wild three-spined stickleback (Gasterasteus aculeatus L.) as a useful tool for freshwater biomonitoring: A multiparametric approach. Environment International 34, 490498.CrossRefGoogle ScholarPubMed
Schabuss, M., Gemeiner, M., Gleiß, A., Lewis, J. W., Miller, I., Möstl, E., Schober, U., Tschulenk, W., Walter, I. and Grillitsch, B. (2005). Ligula intestinalis infection as a potential source of bias in the bioindication of endocrine disruption in the European chub Leuciscus cephalus. Journal of Helminthology 79, 9194.CrossRefGoogle ScholarPubMed
Scharsack, J. P., Koch, K. and Hammerschmidt, K. (2007). Who is in control of the stickleback immune system: interactions between Schistocephalus solidus and its specific vertebrate host. Proceedings of the Royal Society of London, B 274, 31513158.Google ScholarPubMed
Skálová, L., Krizová, V., Cvilink, V., Szotáková, B., Storkánová, L., Velík, J. and Lamka, J. (2007). Mouflon (Ovis musimon) dicrocoeliosis: effects of parasitosis on the activities of biotransformation enzymes and albendazole metabolism in liver. Veterinary Parasitology 146, 254262.CrossRefGoogle ScholarPubMed
Smyth, J. D. (1946). Studies on tapeworm physiology 1. The cultivation of Schistocephalus solidus in vitro. Journal of Experimental Biology 23, 4770.CrossRefGoogle ScholarPubMed
Sures, B. (2008). Host-parasite interactions in polluted environments. Journal of Fish Biology 73, 21332142.CrossRefGoogle Scholar
Sures, B., Lutz, I. and Kloas, W. (2006). Effects of infection with Anguillicola crassus and simultaneous exposure with Cd and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on the levels of cortisol and glucose in European eel (Anguilla anguilla). Parasitology 132, 281288.CrossRefGoogle ScholarPubMed
Trubiroha, A., Kroupova, H., Frank, S. N., Sures, B. and Kloas, W. (2011). Inhibition of gametogenesis by the cestodes Ligula intestinalis in roach (Rutilus rutilus) is attenuated under laboratory conditions. Parasitology 138, 648659.CrossRefGoogle Scholar
Trubiroha, A., Kroupova, H., Wuertz, S., Frank, S. N., Sures, B. and Kloas, W. (2010). Naturally-induced endocrine disruption by the parasite Ligula intestinalis (Cestoda) in roach (Rutilus rutilus). General and Comparative Endocrinology 166, 234240.CrossRefGoogle ScholarPubMed
Trubiroha, A., Wuertz, S., Frank, S. N., Sures, B. and Kloas, W. (2009). Expression of gonadotropin subunits in roach (Rutilus rutilus, Cyprinidae) infected with plerocercoids of the tapeworm Ligula intestinalis (Cestoda). International Journal for Parasitology 39, 14651473.CrossRefGoogle ScholarPubMed
Van der Oost, R., Beyer, J. and Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13, 57149.CrossRefGoogle ScholarPubMed
Van der Oost, R., Van Gastel, L., Worst, D., Hanraads, M., Satumalay, K., Van Schoten, F.-J., Heida, H. and Vermeulen, N. P. E. (1994). Biochemical markers in feral roach (Rutilus rutilus) in relation to the bioaccumulation of organic trace pollutants. Chemosphere 29, 801817.CrossRefGoogle Scholar
Vigano, L., Arillo, A., Melodia, F., Arlati, P. and Monti, C. (1998). Biomarker responses in cyprinids of the middle stretch of the river Po, Italy. Environmental Toxicology and Chemistry 17, 404411.CrossRefGoogle Scholar