Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:51:29.221Z Has data issue: false hasContentIssue false

FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains

Published online by Cambridge University Press:  08 July 2015

CHARLOTTE M. THOMAS
Affiliation:
School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK
DAVID J. TIMSON*
Affiliation:
School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK
*
*Corresponding author. School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. E-mail: d.timson@qub.ac.uk

Summary

FhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banci, L., Bertini, I., Cantini, F., Ciofi-Baffoni, S., Cavet, J. S., Dennison, C., Graham, A. I., Harvie, D. R. and Robinson, N. J. (2007). NMR structural analysis of cadmium sensing by winged helix repressor CmtR. The Journal of Biological Chemistry 282, 3018130188.Google Scholar
Banford, S., Drysdale, O., Hoey, E. M., Trudgett, A. and Timson, D. J. (2013). FhCaBP3: a Fasciola hepatica calcium binding protein with EF-hand and dynein light chain domains. Biochimie 95, 751758.CrossRefGoogle ScholarPubMed
Boray, J. C. (1994). Diseases of Domestic Animals Caused by Flukes. Food and Agricultural Organisation of the United Nations, Rome.Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.Google Scholar
Brand, L. and Gohlke, J. R. (1972). Fluorescence probes for structure. Annual Review of Biochemistry 41, 843868.Google Scholar
Brennan, G. P., Fairweather, I., Trudgett, A., Hoey, E., McCoy, , McConville, M., Meaney, M., Robinson, M., McFerran, N., Ryan, L., Lanusse, C., Mottier, L., Alvarez, L., Solana, H., Virkel, G. and Brophy, P. M. (2007). Understanding triclabendazole resistance. Experimental and Molecular Pathology 82, 104109.CrossRefGoogle ScholarPubMed
Cavet, J. S., Graham, A. I., Meng, W. and Robinson, N. J. (2003). A cadmium-lead-sensing ArsR-SmtB repressor with novel sensory sites. Complementary metal discrimination by NmtR AND CmtR in a common cytosol. The Journal of Biological Chemistry 278, 4456044566.Google Scholar
Chmielowska-Bak, J., Izbianska, K. and Deckert, J. (2013). The toxic Doppelganger: on the ionic and molecular mimicry of cadmium. Acta Biochimica Polonica 60, 369374.Google Scholar
Choong, G., Liu, Y. and Templeton, D. M. (2014). Interplay of calcium and cadmium in mediating cadmium toxicity. Chemico-Biological Interactions 211, 5465.Google Scholar
Cook, W. J., Walter, L. J. and Walter, M. R. (1994). Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry 33, 1525915265.Google Scholar
Cooper, A., Nutley, M. A. and Wadood, A. (2001). Differential scanning microcalorimetry. In Protein-Ligand Interactions: A Practical Approach (eds. Harding, S. E. and Chowdhury, B.), pp. 287318, Oxford University Press, Oxford.Google Scholar
Cummings, M. D., Farnum, M. A. and Nelen, M. I. (2006). Universal screening methods and applications of ThermoFluor. Journal of Biomolecular Screening 11, 854863.Google Scholar
Cwiklinski, K., Dalton, J. P., Dufresne, P. J., La Course, J., Williams, D. J., Hodgkinson, J. and Paterson, S. (2015). The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biology 16, 71.Google Scholar
Fitzsimmons, C. M., Stewart, T. J., Hoffmann, K. F., Grogan, J. L., Yazdanbakhsh, M. and Dunne, D. W. (2004). Human IgE response to the Schistosoma haematobium 22·6 kDa antigen. Parasite Immunology 26, 371376.Google Scholar
Fitzsimmons, C. M., McBeath, R., Joseph, S., Jones, F. M., Walter, K., Hoffmann, K. F., Kariuki, H. C., Mwatha, J. K., Kimani, G., Kabatereine, N. B., Vennervald, B. J., Ouma, J. H. and Dunne, D. W. (2007). Factors affecting human IgE and IgG responses to allergen-like Schistosoma mansoni antigens: molecular structure and patterns of in vivo exposure. International Archives of Allergy and Immunology 142, 4050.Google Scholar
Fitzsimmons, C. M., Jones, F. M., Stearn, A., Chalmers, I. W., Hoffmann, K. F., Wawrzyniak, J., Wilson, S., Kabatereine, N. B. and Dunne, D. W. (2012). The Schistosoma mansoni tegumental-allergen-like (TAL) protein family: influence of developmental expression on human IgE responses. PLoS Neglected Tropical Diseases 6, e1593.Google Scholar
Francis, P. and Bickle, Q. (1992). Cloning of a 21·7 kDa vaccine-dominant antigen gene of Schistosoma mansoni reveals an EF hand-like motif. Molecular and Biochemical Parasitology 50, 215224.Google Scholar
Gifford, J. L., Walsh, M. P. and Vogel, H. J. (2007). Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. The Biochemical Journal 405, 199221.Google Scholar
Gnanasekar, M., Salunkhe, A. M., Mallia, A. K., He, Y. X. and Kalyanasundaram, R. (2009). Praziquantel affects the regulatory myosin light chain of Schistosoma mansoni . Antimicrobial Agents and Chemotherapy 53, 10541060.Google Scholar
Havercroft, J. C., Huggins, M. C., Dunne, D. W. and Taylor, D. W. (1990). Characterisation of Sm20, a 20-kilodalton calcium-binding protein of Schistosoma mansoni . Molecular and Biochemical Parasitology 38, 211219.Google Scholar
Hoffmann, K. F. and Strand, M. (1997). Molecular characterization of a 20·8 kDa Schistosoma mansoni antigen. Sequence similarity to tegumental associated antigens and dynein light chains. The Journal of Biological Chemistry 272, 1450914515.Google Scholar
Humar, M., Pischke, S. E., Loop, T., Hoetzel, A., Schmidt, R., Klaas, C., Pahl, H. L., Geiger, K. K. and Pannen, B. H. (2004). Barbiturates directly inhibit the calmodulin/calcineurin complex: a novel mechanism of inhibition of nuclear factor of activated T cells. Molecular Pharmacology 65, 350361.Google Scholar
Jeffs, S. A., Hagan, P., Allen, R., Correa-Oliveira, R., Smithers, S. R. and Simpson, A. J. (1991). Molecular cloning and characterisation of the 22-kilodalton adult Schistosoma mansoni antigen recognised by antibodies from mice protectively vaccinated with isolated tegumental surface membranes. Molecular and Biochemical Parasitology 46, 159167.Google Scholar
Kelley, L. A. and Sternberg, M. J. (2009). Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363371.Google Scholar
Kim, S., Cullis, D. N., Feig, L. A. and Baleja, J. D. (2001). Solution structure of the Reps1 EH domain and characterization of its binding to NPF target sequences. Biochemistry 40, 67766785.CrossRefGoogle ScholarPubMed
Kim, Y. J., Yoo, W. G., Lee, M. R., Kim, D. W., Lee, W. J., Kang, J. M., Na, B. K. and Ju, J. W. (2012). Identification and characterization of a novel 21·6 kDa tegumental protein from Clonorchis sinensis . Parasitology Research 110, 20612066.Google Scholar
Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D. and Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77 (Suppl 9), 114122.Google Scholar
Kumar, S., Nei, M., Dudley, J. and Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299306.Google Scholar
Lane, T. W. and Morel, F. M. (2000). A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences of the United States of America 97, 46274631.Google Scholar
LaPorte, D. C., Wierman, B. M. and Storm, D. R. (1980). Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19, 38143819.Google Scholar
Lopes, D. O., Paiva, L. F., Martins, M. A., Cardoso, F. C., Rajao, M. A., Pinho, J. M., Caliari, M. V., Correa-Oliveira, R., Mello, S. M., Leite, L. C. and Oliveira, S. C. (2009). Sm21·6 a novel EF-hand family protein member located on the surface of Schistosoma mansoni adult worm that failed to induce protection against challenge infection but reduced liver pathology. Vaccine 27, 41274135.Google Scholar
Matulis, D., Kranz, J. K., Salemme, F. R. and Todd, M. J. (2005). Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry 44, 52585266.Google Scholar
Milos, M., Comte, M., Schaer, J. J. and Cox, J. A. (1989). Evidence for four capital and six auxiliary cation-binding sites on calmodulin: divalent cation interactions monitored by direct binding and microcalorimetry. Journal of Inorganic Biochemistry 36, 1125.Google Scholar
Mohamed, M. M., Shalaby, K. A., LoVerde, P. T. and Karim, A. M. (1998). Characterization of Sm20·8, a member of a family of schistosome tegumental antigens. Molecular and Biochemical Parasitology 96, 1525.Google Scholar
Ornstein, L. and Davis, B. J. (1964). Disc electrophoresis-I: background and theory. Annals of the New York Academy of Sciences 121, 321349.CrossRefGoogle ScholarPubMed
Orr, R., Kinkead, R., Newman, R., Anderson, L., Hoey, E. M., Trudgett, A. and Timson, D. J. (2012). FhCaBP4: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitology Research 111, 17071713.Google Scholar
Osawa, M., Swindells, M. B., Tanikawa, J., Tanaka, T., Mase, T., Furuya, T. and Ikura, M. (1998). Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. Journal of Molecular Biology 276, 165176.Google Scholar
Ouyang, H. and Vogel, H. J. (1998). Metal ion binding to calmodulin: NMR and fluorescence studies. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 11, 213222.Google Scholar
Pacifico, L. G., Fonseca, C. T., Chiari, L. and Oliveira, S. C. (2006). Immunization with Schistosoma mansoni 22·6 kDa antigen induces partial protection against experimental infection in a recombinant protein form but not as DNA vaccine. Immunobiology 211, 97104.Google Scholar
Partis, M. D., Griffiths, D. G., Roberts, G. C. and Beechey, R. D. (1983). Cross-linking of protein by ω-maleimido alkanoyl N-hydroxysuccinimido esters. Journal of Protein Chemistry 2, 263277.Google Scholar
Robinson, M. W. and Dalton, J. P. (2009). Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 27632776.Google Scholar
Ruiz de Eguino, A. D., Machin, A., Casais, R., Castro, A. M., Boga, J. A., Martin-Alonso, J. M. and Parra, F. (1999). Cloning and expression in Escherichia coli of a Fasciola hepatica gene encoding a calcium-binding protein. Molecular and Biochemical Parasitology 101, 1321.Google Scholar
Russell, S. L. and Timson, D. J. (2014). Calcium binding proteins in the liver fluke, Fasciola hepatica . In New Developments in Calcium Signaling Research, pp. 89104. Ed. Yamaguchi, M. Nova Science Publishers, Inc.Google Scholar
Sanabria, R., Ceballos, L., Moreno, L., Romero, J., Lanusse, C. and Alvarez, L. (2013). Identification of a field isolate of Fasciola hepatica resistant to albendazole and susceptible to triclabendazole. Veterinary Parasitology 193, 105110.Google Scholar
Sanchez-Barrena, M. J., Martinez-Ripoll, M., Zhu, J. K. and Albert, A. (2005). The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. Journal of Molecular Biology 345, 12531264.Google Scholar
Santiago, M. L., Hafalla, J. C., Kurtis, J. D., Aligui, G. L., Wiest, P. M., Olveda, R. M., Olds, G. R., Dunne, D. W. and Ramirez, B. L. (1998). Identification of the Schistosoma japonicum 22·6 kDa antigen as a major target of the human IgE response: similarity of IgE-binding epitopes to allergen peptides. International Archives of Allergy and Immunology 117, 94104.Google Scholar
Schweizer, G., Braun, U., Deplazes, P. and Torgerson, P. R. (2005). Estimating the financial losses due to bovine fasciolosis in Switzerland. The Veterinary Record 157, 188193.Google Scholar
Senawong, G., Laha, T., Loukas, A., Brindley, P. J. and Sripa, B. (2012). Cloning, expression, and characterization of a novel Opisthorchis viverrini calcium-binding EF-hand protein. Parasitology International 61, 94100.Google Scholar
Senguen, F. T. and Grabarek, Z. (2012). X-ray structures of magnesium and manganese complexes with the N-terminal domain of calmodulin: insights into the mechanism and specificity of metal ion binding to an EF-hand. Biochemistry 51, 61826194.CrossRefGoogle Scholar
Subpipattana, P., Grams, R. and Vichasri-Grams, S. (2012). Analysis of a calcium-binding EF-hand protein family in Fasciola gigantica . Experimental Parasitology 130, 364373.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Tanaka, T., Ohmura, T. and Hidaka, H. (1983). Calmodulin antagonists’ binding sites on calmodulin. Pharmacology 26, 249257.Google Scholar
Thomas, C. M., Fitzsimmons, C. M., Dunne, D. W. and Timson, D. J. (2015). Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: differences in ion and drug binding properties. Biochimie 108, 4047.Google Scholar
Timson, D. J. (2005). Functional analysis of disease-causing mutations in human UDP-galactose 4-epimerase. FEBS Journal 272, 61706177.CrossRefGoogle ScholarPubMed
Vichasri-Grams, S., Subpipattana, P., Sobhon, P., Viyanant, V. and Grams, R. (2006). An analysis of the calcium-binding protein 1 of Fasciola gigantica with a comparison to its homologs in the phylum Platyhelminthes. Molecular and Biochemical Parasitology 146, 1023.Google Scholar
Waine, G. J., Becker, M. M., Scott, J. C., Kalinna, B. H., Yang, W. and McManus, D. P. (1994). Purification of a recombinant Schistosoma japonicum antigen homologous to the 22 kDa membrane-associated antigen of S. mansoni, a putative vaccine candidate against schistosomiasis. Gene 142, 259263.Google Scholar
Wang, W. and Malcolm, B. A. (1999). Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. BioTechniques 26, 680682.Google Scholar
Weiss, B., Prozialeck, W. C. and Wallace, T. L. (1982). Interaction of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochemical Pharmacology 31, 22172226.Google Scholar
Wilson, R. A., Wright, J. M., de Castro-Borges, W., Parker-Manuel, S. J., Dowle, A. A., Ashton, P. D., Young, N. D., Gasser, R. B. and Spithill, T. W. (2011). Exploring the Fasciola hepatica tegument proteome. International Journal for Parasitology 41, 13471359.Google Scholar
Winkelhagen, A. J., Mank, T., de Vries, P. J. and Soetekouw, R. (2012). Apparent triclabendazole-resistant human Fasciola hepatica infection, the Netherlands. Emerging Infectious Diseases 18, 10281029.Google Scholar
Xu, J., Ren, Y., Xu, X., Chen, J., Li, Y., Gan, W., Zhang, Z., Zhan, H. and Hu, X. (2014). Schistosoma japonicum tegumental protein 20·8, role in reproduction through its calcium-binding ability. Parasitology Research 113, 491497.Google Scholar
Xu, Y., Feng, L., Jeffrey, P. D., Shi, Y. and Morel, F. M. (2008). Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452, 5661.Google Scholar
Zhang, Z., Xu, H., Gan, W., Zeng, S. and Hu, X. (2012). Schistosoma japonicum calcium-binding tegumental protein SjTP22·4 immunization confers praziquantel schistosomulumicide and antifecundity effect in mice. Vaccine 30, 51415150.Google Scholar
Supplementary material: File

Thomas and Timson supplementary material

Thomas and Timson supplementary material 1

Download Thomas and Timson supplementary material(File)
File 249.1 KB
Supplementary material: File

Thomas and Timson supplementary material

Thomas and Timson supplementary material 2

Download Thomas and Timson supplementary material(File)
File 248.7 KB
Supplementary material: File

Thomas and Timson supplementary material

Figure S1

Download Thomas and Timson supplementary material(File)
File 69.3 KB