Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:26:49.533Z Has data issue: false hasContentIssue false

Evidence of cryptic speciation in mesostigmatid mites from South Africa

Published online by Cambridge University Press:  13 June 2014

ADRIAAN ENGELBRECHT
Affiliation:
Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
CONRAD A. MATTHEE
Affiliation:
Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
EDWARD A. UECKERMANN
Affiliation:
ARC-Plant Protection Research Institute, Private Bag X134, Queenswood, Pretoria 0121, South Africa School of Environmental Sciences and Development, North-West University, Potchefstroom campus, Potchefstroom 2520, South Africa
SONJA MATTHEE*
Affiliation:
Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
*
* Corresponding author: Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. E-mail: smatthee@sun.ac.za

Summary

Laelaps giganteus and Laelaps muricola (Mesostigmata; Laelapidae) are widespread and locally abundant host generalists on small mammals in southern Africa. The large host range and complex life history of these ectoparasites may allude to possible intraspecific cryptic diversity in these taxa. To assess genetic and morphological diversity in L. giganteus and L. muricola, we sampled 228 rodents at eight localities in South Africa. This sample included nine previously recorded host species and on these, L. muricola was only recorded from Mastomys natalensis and Micaelamys namaquensis while L. giganteus was found on Rhabdomys dilectus and Lemniscomys rosalia. Phylogenetic analyses of partial mtDNA cytochrome oxidase subunit I (COI) and nuclear ITS1 data strongly supported the recognition of L. giganteus and L. muricola, a scenario partly supported by the Tropomyosin intron. Strong support for evolutionary distinct lineages within L. giganteus is found: L. giganteus lineage 1 is confined to R. dilectus and L. giganteus lineage 2 is confined to L. rosalia. These host specific monophyletic lineages were also separated by 9·84% mtDNA sequence divergence and 3·44% nuclear DNA sequence divergence. Since quantitative morphometric analyses were not congruent with these findings, these two lineages more than likely represent cryptic species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (ed. Petrov, P. N. and Csaki, F.), pp. 267281. Adad. Kiado, Budapest, Hungary.Google Scholar
Apanaskevich, D. A., Horak, I. G., Matthee, C. A. and Matthee, S. (2011). A new species of Ixodes (Acari: Ixodidae) from South African mammals. Journal of Parasitology 97, 389398.Google Scholar
Ballard, J. W. O. and Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology 13, 729744.Google Scholar
Barrett, L. G., Thrall, P. H., Burdon, J. J. and Linde, C. C. (2008). Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends in Ecology and Evolution 23, 678685.Google Scholar
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K. and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22, 148155.Google Scholar
Blouin, M. S., Yowell, C. A., Courtney, C. H. and Dame, J. B. (1995). Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 10071014.Google Scholar
Bryant, D. and Moulton, V. (2004). NeighborNet: an agglomerative algorithm for the construction of planar phylogenetic networks. Molecular Biology and Evolution 21, 255265.Google Scholar
Burger, J. R., Chesh, A. S., Muñoz, P., Fredes, F., Ebensperger, L. A. and Hayes, L. D. (2012). Sociality, exotic ectoparasites, and fitness in the plural breeding rodent Octodon degus . Behavioural Ecology and Sociobiology 66, 5766.CrossRefGoogle ScholarPubMed
Bush, G. L. (1994). Sympatric speciation in animals: new wine in old bottles. Trends in Ecology and Evolution 9, 285288.Google Scholar
Cangi, N., Horak, I. G., Apanaskevich, D. A., Matthee, S., Das Neves, L. C. B. G., Estrada-Peña, A. and Matthee, C. A. (2013). The influence of interspecific competition and host preference on the phylogeography of two African Ixodid tick species. PLoS One 8, e76930. doi: 10.1371/journal.pone.0076930.Google Scholar
Chimimba, C. T. (2001). Infraspecific morphometric variation in Aethomys namaquensis (Rodentia: Muridae) from southern Africa. Zeitschrift für Säugetierkunde 253, 191210.Google Scholar
Clayton, D. H., Al-Tamimi, S. and Johnson, K. P. (2003). The ecological basis of coevolutionary history. In Tangled Trees: Phylogeny, Cospeciation, and Coevolution (ed. Page, R. D. M.), pp. 330350. University of Chicago Press, Chicago, IL, USA.Google Scholar
Criscione, C. D. and Blouin, M. S. (2004). Life cycles shape parasite evolution: comparative population genetics of salmon trematodes. Evolution 58, 198202.Google ScholarPubMed
Criscione, C. D. and Blouin, M. S. (2005). Effective sizes of macroparasite populations: a conceptual model. Trends in Parasitology 21, 212217.Google Scholar
Degnan, J. H. and Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference, and the multispecies coalescent. Trends in Ecology and Evolution 24, 332340.CrossRefGoogle ScholarPubMed
de León, G. P. P. and Nadler, S. A. (2010). What we don't recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology 96, 453464.CrossRefGoogle Scholar
de Meeûs, T. (2000). Adaptive diversity, specialisation, habitat preference and parasites. In Evolutionary Biology of Host–Parasite Relationships: Theory Meets Reality (ed. Poulin, R., Morand, S. & Skorping, A.), pp. 2742. Elsevier, Amsterdam, the Netherlands.Google Scholar
Detwiler, J. T., Bos, D. H. and Minchella, D. J. (2010). Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution 55, 611620.Google Scholar
Dress, A. W. M. and Huson, D. H. (2004). Constructing splits graphs. IEEE/ACM Transactions Computational Biology and Bioinformatics 1, 190–115.CrossRefGoogle ScholarPubMed
Ducroz, J. F., Volobouev, V. and Granjon, L. (2001). An assessment of the systematics of arvicanthine rodents using mitochondrial DNA sequences: evolutionary and biogeographic implications. Journal of Mammalian Evolution 8, 173206.Google Scholar
du Toit, N., Jansen van Vuuren, B., Matthee, S. and Matthee, C. A. (2012). Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy. Molecular Phylogenetics and Evolution 65, 7586.Google Scholar
du Toit, N., Matthee, S. and Matthee, C. A. (2013 a). The sympatric occurrence of two genetically divergent lineages of sucking louse, Polyplax arvicanthis (Phthiraptera: Anoplura), on the four-striped mouse genus, Rhabdomys (Rodentia: Muridae). Parasitology 140, 604616.Google Scholar
du Toit, N., Jansen van Vuuren, B., Matthee, S. and Matthee, C. A. (2013 b). Biogeography and host related factors trump parasite life history: limited congruence among the genetic structures of specific ectoparasitic lice and their rodent hosts. Molecular Ecology 22, 51855204.CrossRefGoogle ScholarPubMed
Evans, G. O. and Till, W. M. (1979). Mesostigmatic mites of Britain and Ireland (Chelicerata: Acari-Parasitiformes): an introduction to their external morphology and classification. Transactions of the Zoological Society of London 35, 139270.CrossRefGoogle Scholar
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.Google Scholar
Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates, Sunderland, MA, USA.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294297.Google Scholar
Froeschke, G., van der Mescht, L., McGeoch, M. and Matthee, S. (2013). Life history strategy influences parasite responses to habitat fragmentation. International Journal for Parasitology 43, 11091118.Google Scholar
Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.Google Scholar
Hall, T. (2005). BioEdit, Biological sequence alignment editor for Win95/98/NT/2K/XP. www.mbio.ncsu.edu/BioEdit/bioedit.html.Google Scholar
Hirst, S. (1925). Descriptions of new Acari, mainly parasitic on rodents. Proceedings of the Zoological Society of London 95, 4969.Google Scholar
Huson, D. H. and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254267.Google Scholar
Huyse, T., Poulin, R. and Theron, A. (2005). Speciation in parasites: a population genetics approach. Trends in Parasitology 21, 469475.Google Scholar
Ignoffo, C. M. (1958). Evaluation of techniques for recovering ectoparasites. Proceedings of the Iowa Academy of Science 65, 540545.Google Scholar
Knee, W., Beaulieu, F., Skevington, J. H., Kelso, S. and Forbes, M. R. (2012). Cryptic species of mites (Uropodoidea: Uroobovella spp.) associated with burying beetles (Silphidae: Nicrophorus): the collapse of a host generalist revealed by molecular and morphological analyses. Molecular Phylogenetics and Evolution 65, 276286.Google Scholar
Maddison, W. P. and Knowles, L. L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55, 2130.Google Scholar
Martin, P., Dabert, M. and Dabert, J. (2010). Molecular evidence for species separation in the water mite Hygrobates nigromaculatus Lebert, 1879 (Acari, Hydrachnidia): evolutionary consequences of the loss of larval parasitism. Aquatic Sciences 72, 347360.Google Scholar
Matthee, S. and Ueckermann, E. A. (2008). Ectoparasites of rodents in southern Africa: a new species of Androlaelaps Berlese, 1903 (Acari: Parasitiformes, Laelapidae) from Rhabdomys pumilio (Sparrman) (Rodentia: Muridae). Systematic Parasitology 70, 185190.Google Scholar
Matthee, S. and Ueckermann, E. A. (2009). Ectoparasites of rodents in Southern Africa: two new species of Laelaps Koch, 1836 (Acari: Laelapidae) ectoparasitic on Rhabdomys pumilio (Sparrman) (Rodentia: Muridae). Systematic Parasitology 73, 2735.Google Scholar
Matthee, S., Horak, I. G., Beaucournu, J.-C., Durden, L. A., Ueckermann, E. A. and McGeoch, M. A. (2007). Epifaunistic arthropod parasites of the four-striped mouse, Rhabdomys pumilio, in the Western Cape Province, South Africa. Journal of Parasitology 93, 4759.Google Scholar
Matthee, S., Horak, I. G., van der Mescht, L., Ueckermann, E. A. and Radloff, F. G. T. (2010). Ectoparasite diversity on rodents at De Hoop Nature Reserve, Western Cape Province. African Zoology 45, 213224.Google Scholar
Maynard Smith, J. (1966). Sympatric speciation. American Naturalist 100, 637650.Google Scholar
Morelli, M. and Spicer, G. S. (2007). Cospeciation between the nasal mite Ptilonyssus sairae (Acari: Rhinonyssidae) and its bird hosts. Systematic and Applied Acarology 12, 179188.Google Scholar
Mucina, L. and Rutherford, M. C. (2006). The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria, South Africa.Google Scholar
Nadler, S. A. (1995). Microevolution and the genetic structure of parasite populations. Journal of Parasitology 81, 395403.Google Scholar
Nadler, S. A. and de Leon, G. P. P. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138, 16881709.Google Scholar
Noureddine, R., Chauvin, A. and Plantard, O. (2011). Lack of genetic structure among Eurasian populations of the tick Ixodes ricinus contrasts with marked divergence from north-African populations. International Journal for Parasitology 41, 183192.Google Scholar
Nylander, J. A. A. (2004). MrModeltest v2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.Google Scholar
Page, R. D. M. (1996). Temporal congruence revisited: comparison of mitochondrial DNA sequence divergence in cospeciating pocket gophers and their chewing lice. Systematic Parasitology 45, 151167.Google Scholar
Perkins, S. L., Martinsen, E. S. and Falk, B. G. (2011). Do molecules matter more than morphology? Promises and pitfalls in parasites. Parasitology 138, 16641674.Google Scholar
Posada, D. (2008). JModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.Google Scholar
Rambaut, A. and Drummond, A. J. (2007). Tracer v1.5, http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
Roy, L., Dowling, A. P. G., Chauve, C. M. and Buronfosse, T. (2008). Delimiting species boundaries within Dermanyssus Duges, 1834 (Acari: Dermanyssidae) using a total evidence approach. Molecular Phylogenetics and Evolution 50, 446470.Google Scholar
Roy, L., Dowling, A. P. G., Chauve, C. M. and Buronfosse, T. (2010). Diversity of phylogenetic information according to the locus and the taxonomic level: an example from a parasitic Mesostigmatid mite genus. International Journal of Molecular Science 11, 17041734.Google Scholar
Russo, I. M., Chimimba, C. T. and Bloomer, P. (2010). Bioregion heterogeneity correlates with extensive mitochondrial DNA diversity in the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae) from southern Africa – evidence for a species complex. BMC Evolutionary Biology 10, 307322.Google Scholar
Shäffer, S., Pfingstl, T., Koblmuller, S., Winkler, K. A., Sturmbauer, C. and Krisper, G. (2010). Phylogenetic analysis of European Scutovertex mites (Acari, Oribatida, Scutoverticidae) reveals paraphyly and cryptic diversity: a molecular genetic and morphological approach. Molecular Phylogenetics and Evolution 55, 677688.Google Scholar
Skinner, J. D. and Chimimba, C. T. (2005). The Mammals of the South African Subregion, 3rd Edn, pp. 130133. Cambridge University Press, Cambridge, UK.Google Scholar
Skoracka, A. and Dabert, M. (2010). The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bulletin of Entomological Research 100, 263272.Google Scholar
Smith, M. A., Wood, D. M., Janzen, D. H., Hallwachs, W. and Hebert, P. D. N. (2007). DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences USA 104, 49674972.CrossRefGoogle Scholar
Ståhls, G. and Savolainen, E. (2008). MtDNA COI barcodes reveal cryptic diversity in the Baetis vernus group (Ephemeroptera, Baetidae). Molecular Phylogenetics and Evolution 46, 8287.Google Scholar
Steppan, S. J., Adkins, R. M., Spinks, P. Q. and Hale, C. (2005). Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Molecular Phylogenetics and Evolution 37, 370388.Google Scholar
Swofford, D. L. (2002). PAUP* Phylogenetic Analysis Using Parsimony (and other Methods), Version 4.10. Illinois Natural History Survey, Champaign, IL, USA.Google Scholar
Viljoen, H., Bennett, N. C., Ueckermann, E. A. and Lutermann, H. (2011). The role of host traits, season and group size on parasite burdens in a cooperative mammal. PloS One 6, e27003. doi: 10.1371/journal.pone.0027003.t001.Google Scholar
Volobouev, V. T., Sicard, B., Aniskin, V. M., Gautun, J. C. and Granjon, L. (2000). Robertsonian polymorphism, B chromosomes variation and sex chromosome heteromorphism in the African water rat Dasymys (Rodentia, Muridae). Chromosome Research 8, 689697.Google Scholar
Watts, C. H. S. and Baverstock, P. R. (1995). Evolution in the Murinae (Rodentia) assessed by microcomplement fixation of albumin. Australian Journal of Zoology 43, 105118.Google Scholar
Whiteman, N. K. and Parker, P. G. (2005). Using parasites to infer host population history: a new rationale for parasite conservation. Animal Conservation 8, 175181.Google Scholar
Williams, H. C., Ormerod, S. J. and Bruford, M. W. (2006). Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera, Baetidae). Molecular Phylogenetics and Evolution 40, 370382.Google Scholar
Zumpt, F. (1961). The Arthropod Parasites of Vertebrates in Africa South of the Sahara. Vol. I (Chelicerata). Publications of the South African Institute for Medical Research, South African Institute for Medical Research, Johannesburg, South Africa.Google Scholar