Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:15:51.509Z Has data issue: false hasContentIssue false

Evaluation of methylene blue, pyrimethamine and its combination on an in vitro Neospora caninum model

Published online by Cambridge University Press:  11 January 2017

LUIZ MIGUEL PEREIRA
Affiliation:
Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
ISABEL CRISTINA VIGATO-FERREIRA
Affiliation:
Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
GABRIELA DE LUCA
Affiliation:
Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
CÁSSIA MARIANA BRONZON DA COSTA
Affiliation:
Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
ANA PATRÍCIA YATSUDA*
Affiliation:
Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
*
*Corresponding author: Departamento de Análises Clínicas, Bromatológicas e Toxicológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, Brazil. E-mail: ayatsuda@fcfrp.usp.br

Summary

Neospora caninum is an apicomplexan parasite strongly related to reproductive problems in cattle. The neosporosis control is not well established and several fronts are under development, predominantly based on immune protection, immunomodulation and chemotherapy. The use of anti-malarial drugs as therapeutic sources has, in theory, considerable potential for any apicomplexan. Drugs such as methylene blue (MB) and pyrimethamine (Pyr) represent therapeutic options for malaria; thus, their use for neosporosis should be assessed. In this work, we tested the effects of MB and Pyr on N. caninum proliferation and clearance, using LacZ-tagged tachyzoites. The drugs inhibited at nanomolar dosages and its combination demonstrated an antagonistic interaction in proliferation assays, according to the Chou and Talalay method for drug combination index. However, the drug combination significantly improved the parasite in vitro clearance. The repositioning of well-established drugs opens a short-term strategy to obtain low-cost therapeutics approaches against neosporosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azzouz, A., Jurado-Sanchez, B., Souhail, B. and Ballesteros, E. (2011). Simultaneous determination of 20 pharmacologically active substances in cow's milk, goat's milk, and human breast milk by gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 59, 51255132.CrossRefGoogle ScholarPubMed
Berenbaum, M. C. (1978). A method for testing for synergy with any number of agents. Journal of Infectious Diseases 137, 122130.CrossRefGoogle ScholarPubMed
Bjerkås, I., Mohn, S. F. and Presthus, J. (1984). Unidentified cyst-forming sporozoon causing encephalomyelitis and myositis in dogs. Zeitschrift für Parasitenkunde 70, 271274.CrossRefGoogle ScholarPubMed
Buchholz, K., Schirmer, R. H., Eubel, J. K., Akoachere, M. B., Dandekar, T., Becker, K. and Gromer, S. (2008). Interactions of methylene blue with human disulfide reductases and their orthologues from Plasmodium falciparum . Antimicrobial Agents and Chemotherapy 52, 183191.CrossRefGoogle ScholarPubMed
Cardoso, M. R., Mota, C. M., Ribeiro, D. P., Noleto, P. G., Andrade, W. B., Souza, M. A., Silva, N. M., Mineo, T. W., Mineo, J. R. and Silva, D. A. (2012). Adjuvant and immunostimulatory effects of a D-galactose-binding lectin from Synadenium carinatum latex (ScLL) in the mouse model of vaccination against neosporosis. Veterinary Research 43, 76.CrossRefGoogle ScholarPubMed
Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research 70, 440446.CrossRefGoogle ScholarPubMed
Chou, J. H., Chou, T. C. and Talalay, P. (1983). Computer simulation of drug effects: quantitation of synergism, summation and antagonism of multiple drugs. Pharmacologist 25, 175.Google Scholar
Dormoi, J., Pascual, A., Briolant, S., Amalvict, R., Charras, S., Baret, E., Huyghues des Etages, E., Feraud, M. and Pradines, B. (2012). Proveblue (methylene blue) as an antimalarial agent: in vitro synergy with dihydroartemisinin and atorvastatin. Antimicrobial Agents and Chemotherapy 56, 34673469.CrossRefGoogle ScholarPubMed
Dubey, J. P., Hattel, A. L., Lindsay, D. S. and Topper, M. J. (1988). Neonatal Neospora caninum infection in dogs: isolation of the causative agent and experimental transmission. Journal of the American Veterinary Medical Association 193, 12591263.Google ScholarPubMed
Garavito, G., Bertani, S., Rincon, J., Maurel, S., Monje, M. C., Landau, I., Valentin, A. and Deharo, E. (2007). Blood schizontocidal activity of methylene blue in combination with antimalarials against Plasmodium falciparum . Parasite 14, 135140. http://dx.doi.org/10.1051/parasite/2007142135 CrossRefGoogle ScholarPubMed
Garavito, G., Bertani, S., Quiliano, M., Valentin, A., Aldana, I. and Deharo, E. (2012). The in vivo antimalarial activity of methylene blue combined with pyrimethamine, chloroquine and quinine. Memórias do Instituto Oswaldo Cruz 107, 820823.CrossRefGoogle ScholarPubMed
Ginimuge, P. R. and Jyothi, S. D. (2010). Methylene blue: revisited. Journal of Anaesthesiology, Clinical Pharmacology 26, 517520. PMCID: PMC3087269.CrossRefGoogle ScholarPubMed
Ivanetich, K. M. and Santi, D. V. (1990). Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa. FASEB Journal 4, 15911597.CrossRefGoogle ScholarPubMed
Jimenez-Ruiz, E., Alvarez-Garcia, G., Aguado-Martinez, A., Salman, H., Irache, J. M., Marugan-Hernandez, V. and Ortega-Mora, L. M. (2012). Low efficacy of NcGRA7, NcSAG4, NcBSR4 and NcSRS9 formulated in poly-epsilon-caprolactone against Neospora caninum infection in mice. Vaccine 30, 49834992.CrossRefGoogle ScholarPubMed
Kaye, A. (2011). Toxoplasmosis: diagnosis, treatment, and prevention in congenitally exposed infants. Journal of Pediatric Health Care 25, 355364.CrossRefGoogle ScholarPubMed
Kieffer, F. and Wallon, M. (2013). Congenital toxoplasmosis. Handbook of Clinical Neurology 112, 10991101.CrossRefGoogle ScholarPubMed
Koesukwiwat, U., Jayanta, S. and Leepipatpiboon, N. (2007 a). Solid-phase extraction for multiresidue determination of sulfonamides, tetracyclines, and pyrimethamine in Bovine's milk. Journal of Chromatography 1149, 102111.CrossRefGoogle ScholarPubMed
Koesukwiwat, U., Jayanta, S. and Leepipatpiboon, N. (2007 b). Validation of a liquid chromatography-mass spectrometry multi-residue method for the simultaneous determination of sulfonamides, tetracyclines, and pyrimethamine in milk. Journal of Chromatography 1140, 147156.CrossRefGoogle ScholarPubMed
Lindsay, D. S. and Dubey, J. P. (1989). Evaluation of anti-coccidial drugs’ inhibition of Neospora caninum development in cell cultures. Journal of Parasitology 75, 990992.CrossRefGoogle ScholarPubMed
Lindsay, D. S., Rippey, N. S., Cole, R. A., Parsons, L. C., Dubey, J. P., Tidwell, R. R. and Blagburn, B. L. (1994). Examination of the activities of 43 chemotherapeutic agents against Neospora caninum tachyzoites in cultured cells. American Journal of Veterinary Research 55, 976981.CrossRefGoogle ScholarPubMed
Lindsay, D. S., Butler, J. M., Rippey, N. S. and Blagburn, B. L. (1996). Demonstration of synergistic effects of sulfonamides and dihydrofolate reductase/thymidylate synthase inhibitors against Neospora caninum tachyzoites in cultured cells, and characterization of mutants resistant to pyrimethamine. American Journal of Veterinary Research 57, 6872.CrossRefGoogle ScholarPubMed
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65, 5563.CrossRefGoogle ScholarPubMed
Muller, J., Aguado-Martinez, A., Manser, V., Balmer, V., Winzer, P., Ritler, D., Hostettler, I., Arranz-Solis, D., Ortega-Mora, L. and Hemphill, A. (2015 a). Buparvaquone is active against Neospora caninum in vitro and in experimentally infected mice. International Journal for Parasitology: Drugs and Drug Resistance 5, 1625.Google ScholarPubMed
Muller, J., Balmer, V., Winzer, P., Rahman, M., Manser, V., Haynes, R. K. and Hemphill, A. (2015 b). In vitro effects of new artemisinin derivatives in Neospora caninum-infected human fibroblasts. International Journal of Antimicrobial Agents 46, 8893.CrossRefGoogle ScholarPubMed
Pastor-Fernandez, I., Regidor-Cerrillo, J., Jimenez-Ruiz, E., Alvarez-Garcia, G., Marugan-Hernandez, V., Hemphill, A. and Ortega-Mora, L. M. (2015). Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle. Parasitology 117.Google ScholarPubMed
Pereira, L. M. and Yatsuda, A. P. (2014). The chloramphenicol acetyltransferase vector as a tool for stable tagging of Neospora caninum . Molecular and Biochemical Parasitology 196, 7581.CrossRefGoogle ScholarPubMed
Pereira, L. M., Candido-Silva, J. A., De Vries, E. and Yatsuda, A. P. (2011). A new thrombospondin-related anonymous protein homologue in Neospora caninum (NcMIC2-like1). Parasitology 138, 287297.CrossRefGoogle ScholarPubMed
Pereira, L. M., Baroni, L. and Yatsuda, A. P. (2014). A transgenic Neospora caninum strain based on mutations of the dihydrofolate reductase-thymidylate synthase gene. Experimental Parasitology 138, 40–7.CrossRefGoogle ScholarPubMed
Peterson, D. S., Walliker, D. and Wellems, T. E. (1988). Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proceedings of the National Academy of Sciences of the United States of America 85, 91149118.CrossRefGoogle ScholarPubMed
Philippe, P., Alzieu, J. P., Taylor, M. A. and Dorchies, P. (2014). Comparative efficacy of diclazuril (Vecoxan (R)) and toltrazuril (Baycox bovis (R)) against natural infections of Eimeria bovis and Eimeria zuernii in French calves. Veterinary Parasitology 206, 129137.CrossRefGoogle Scholar
Rajapakse, S., Chrishan Shivanthan, M., Samaranayake, N., Rodrigo, C. and Deepika Fernando, S. (2013). Antibiotics for human toxoplasmosis: a systematic review of randomized trials. Pathogens and Global Health 107, 162169.CrossRefGoogle ScholarPubMed
Reichel, M. P., Alejandra Ayanegui-Alcerreca, M., Gondim, L. F. and Ellis, J. T. (2013). What is the global economic impact of Neospora caninum in cattle – the billion dollar question. International Journal for Parasitology 43, 133142.CrossRefGoogle ScholarPubMed
Reichel, M. P., Moore, D. P., Hemphill, A., Ortega-Mora, L. M., Dubey, J. P. and Ellis, J. T. (2015). A live vaccine against Neospora caninum abortions in cattle. Vaccine 33, 12991301.CrossRefGoogle ScholarPubMed
Rodrigues Fde, S., Tavares, L. E. and Paiva, F. (2016). Efficacy of treatments with toltrazuril 7·5% and lasalocid sodium in sheep naturally infected with Eimeria spp. Revista Brasileira Parasitologia Veterinaria 25, 293298.CrossRefGoogle ScholarPubMed
Schirmer, R. H., Adler, H., Pickhardt, M. and Mandelkow, E. (2011). “Lest we forget you – methylene blue…”. Neurobiology of Aging 32, 2327–2316.CrossRefGoogle Scholar
Schorer, M., Debache, K., Barna, F., Monney, T., Muller, J., Boykin, D. W., Stephens, C. E. and Hemphill, A. (2012). Di-cationic arylimidamides act against Neospora caninum tachyzoites by interference in membrane structure and nucleolar integrity and are active against challenge infection in mice. International Journal for Parasitology: Drugs and Drug Resistance 2, 109120.Google ScholarPubMed
Strohbusch, M., Muller, N., Hemphill, A., Krebber, R., Greif, G. and Gottstein, B. (2009). Toltrazuril treatment of congenitally acquired Neospora caninum infection in newborn mice. Parasitology Research 104, 13351343.CrossRefGoogle ScholarPubMed
Tang, D. and Santschi, P. H. (2000). Sensitive determination of dissolved sulfide in estuarine water by solid-phase extraction and high-performance liquid chromatography of methylene blue. Journal of Chromatography 883, 305309.CrossRefGoogle ScholarPubMed
Van Dijk, S., Lobsteyn, A. J., Wensing, T. and Breukink, H. J. (1983). Treatment of nitrate intoxication in a cow. The Veterinary Record 112, 272274.CrossRefGoogle Scholar
Venkatesan, M., Alifrangis, M., Roper, C. and Plowe, C. V. (2013). Monitoring antifolate resistance in intermittent preventive therapy for malaria. Trends in Parasitology 29, 497504.CrossRefGoogle ScholarPubMed
Xu, Y. J., Tian, X. H., Zhang, X. Z., Gong, X. H., Liu, H. H., Zhang, H. J., Huang, H. and Zhang, L. M. (2012). Simultaneous determination of malachite green, crystal violet, methylene blue and the metabolite residues in aquatic products by ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Journal of Chromatographic Science 50, 591597.CrossRefGoogle ScholarPubMed
Yoshimoto, M., Otsuki, T., Itagaki, K., Kato, T., Kohsaka, T., Matsumoto, Y., Ike, K. and Park, E. Y. (2015). Evaluation of recombinant Neospora caninum antigens purified from silkworm larvae for the protection of N. caninum infection in mice. Journal of Bioscience and Bioengineering 120, 715719.CrossRefGoogle Scholar
Supplementary material: File

Pereira supplementary material

Figure S1

Download Pereira supplementary material(File)
File 496.4 KB