Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T00:26:40.286Z Has data issue: false hasContentIssue false

Entomopathogenic nematode host finding: response to host contact cues by cruise and ambush foragers

Published online by Cambridge University Press:  06 April 2009

E.E. Lewis
Affiliation:
Department of Entomology, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, NJ 08903, USA
R. Gaugler
Affiliation:
Department of Entomology, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, NJ 08903, USA
R. Harrison
Affiliation:
Department of Entomology, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, NJ 08903, USA

Summary

Search behaviour of two entomopathogenic nematode species with different foraging strategies was compared by measuring parameters of unrewarded search after contact with host cues. Steinernema glaseri cruises in search of hosts. Steinernema carpocapsae ambushes hosts. Nematodes should respond to contact with relevant host cues by shifting their search from ranging to localized after contact with them. We predicted that cruising foragers rely on chemical cues more heavily than ambushers. These species were also tested for host affinities. Nematodes were tracked by image analysis after exposure to faeces, cuticle or food of either Popillia japonica or Spodoptera exiqua. Steinernema glaseri responded to selected host cues by shifting from ranging to localized search, characterized by decreased locomotory rate, distance travelled, search area and the proportion of the test period spent moving. Steinernema carpocapsae did not respond to host cues. Steinernema glaseri responds to selected chemical host cues for host location, whereas S. carpocapsae does not.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anonymous (1987). SAT/STAT: Guide for Personal Computers. Cary, N.C.: SAS Institute.Google Scholar
Bell, W. J. (1985). Sources of information controlling motor patterns in arthropod local search orientation. Journal of Insect Physiology 31, 837–47.CrossRefGoogle Scholar
Bell, W. J. (1990). Searching Behaviour: The Behavioural Ecology of Finding Resources. London: Chapman and Hall Animal Behaviour Series.CrossRefGoogle Scholar
Dutky, S. R., Thompson, J. V. & Cantwell, G. E. (1964). A technique for the mass propagation of the DD-136 nematode. Journal of Insect Pathology 6, 417–22.Google Scholar
Evans, B. I. & O'brien, W. J. (1986). An analysis of the feeding rate of white crappie. Developmental and Environmental Biology of Fishes 7, 200306.Google Scholar
Gaugler, R. R. (1981). Biological control potential of neoaplectanid nematodes. Journal of Nematology 13, 241–9.Google ScholarPubMed
Gaugler, R. R. (1988). Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agriculture, Ecosystems and Environment 24, 351–60.Google Scholar
Gaugler, R. R. & Campbell, J. F. (1991). Behavioural response of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora to oxamyl. Annals of Applied Biology 119, 131–8.CrossRefGoogle Scholar
Gaugler, R. R., Campbell, J. F. & McGuire, T. (1990). Selection for host-finding in Steinernema feltiae. Journal of Invertebrate Pathology 54, 363–72.CrossRefGoogle Scholar
Georgis, R. & Gaugler, R. (1991). Predictability in biological control using entomopathogenic nematodes. Journal of Economic Entomology 84, 713–20.CrossRefGoogle Scholar
Georgis, R. & Poinar, G. O. Jr (1983 a). Effect of soil texture on the distribution and infectivity of Neoaplectana carpocapsae (Nematoda: Steinernematidae). Journal of Nematology 15, 308–11.Google ScholarPubMed
Georgis, R. & Poinar, G. O. Jr (1983 b). Effect of soil texture on the distribution and infectivity of Neoaplectana glaseri (Nematoda: Steinernematidae). Journal of Nematology 15, 329–32.Google ScholarPubMed
Grundler, F., Schnibbe, L. & Wyss, U. (1991). In vitro studies on the behaviour of second-stage juveniles of Heterodera schactii (Nematoda: Heteroderidae) in response to host plant root exudates. Parasitology 103, 149–55.CrossRefGoogle Scholar
Ishibashi, N. & Kondo, E. (1990). Behaviour of infective juveniles. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 139–50. Boca Raton, FL: CRC Press.Google Scholar
Jackson, J. J. & Brooks, M. A. (1989). Susceptibility of immune response to western corn rootworm larvae (Coleoptera: Chrysomelidae) to the entomogenous nematode, Steinernema feltiae (Rhabdita: Steinernematidae). Journal of Economic Entomology 82, 1073.CrossRefGoogle Scholar
Kaya, H. K. (1990). Soil ecology. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 93117. Boca Raton, FL: CRC Press.Google Scholar
Kaya, H. K. & Hara, A. H. (1980). Differential susceptibility of lepidopterous pupae to infection by the nematode Neoaplectana carpocapsae. Journal of Invertebrate Pathology 36, 389.CrossRefGoogle Scholar
Kennedy, J. S. (1978). The concepts of olfactory ‘arrestment’ and ‘attraction’. Physiological Entomology 3, 91–8.CrossRefGoogle Scholar
Klein, M. G. (1990). Efficacy against soil-inhabiting insect pests. In Entomopathogenic Nematodes in Biological Control. (ed. Gaugler, R. & Kaya, H. K.), pp. 195214. Boca Raton, FL: CRC Press.Google Scholar
Miller, J. R. & Strickler, K. L. (1984). Finding and accepting host plants. In Chemical Ecology of Insects (ed. Bell, W. J. & Cardé, R. T.), pp. 127–57. London: Chapman and Hall.CrossRefGoogle Scholar
Molyneaux, A. S. & Bedding, R. A. (1984). Influence of soil texture and moisture on the infectivity of Heterorhabditis sp. Dl and Steinernema glaseri for larvae of the sheep blowfly, Lucilia cuprina. Nematologica 30, 358–65.Google Scholar
Moyle, P. L. & Kaya, H. K. (1981). Dispersal and infectivity of the entomogenous nematode, Neoaplectana carpocapsae Weiser (Rhabditida: Steinernematidae), in sand. Journal of Nematology 13, 419–21.Google ScholarPubMed
Pianka, E. R. (1966). Convexity, desert lizards, and spatial heterogeneity. Ecology 47, 1055–9.CrossRefGoogle Scholar
Poinar, G. O. Jr (1990). Taxonomy and biology of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 2361. Boca Raton, FL: CRC Press.Google Scholar
Schmidt, J. & All, J. N. (1978). Chemical attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to insect larvae. Environmental Entomology 7, 605–7.CrossRefGoogle Scholar
Schmidt, J. & All, J. N. (1979). Attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to common excretory products of insects. Environmental Entomology 8, 5561.CrossRefGoogle Scholar
Strnad, S. P. & Dunn, P. E. (1989). Host search behaviour of neonate western corn rootworm (Diabrotica virgifera virgifera). Journal of Insect Physiology 36, 201–5.CrossRefGoogle Scholar
Webster, J. M. & Dunphy, G. B. (1988). Host compatibility of insects to nematodes. In Vistas on Nematology: A Commemoration of the Twenty-fifth Anniversary of the Society of Nematologists (ed. Veech, J. A. & Dickson, D. W.), pp. 237–45. Hyattsville, MD: Society of Nematologists, Inc.Google Scholar
Woodring, J. L. & Kaya, H. K. (1988). Steinernematid and Heterorhabditid Nematodes: A Handbook of Techniques. Southern Cooperative Series Bulletin No. 331. Arkansas Agricultural Experiment Station, Fayetteville, AR.Google Scholar