Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:28:57.791Z Has data issue: false hasContentIssue false

Electrophysiological responses of males of the potato cyst nematodes, Globodera rostochiensis and G. pallida, to their sex pheromones

Published online by Cambridge University Press:  26 March 2010

E. Riga
Affiliation:
Entomology and Nematology Department, IACR-Rothamsted, Harpenden, Herts. AL5 2JQ, UK Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 3DA, UK
R. N. Perry
Affiliation:
Entomology and Nematology Department, IACR-Rothamsted, Harpenden, Herts. AL5 2JQ, UK
J. Barrett
Affiliation:
Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 3DA, UK
M. R. L. Johnston
Affiliation:
Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 3DA, UK

Summary

The response of individual adult males of the potato cyst nematodes, Globodera rostochiensis and G. pallida, to sex pheromones from adult females was investigated using electrophysiological techniques. Each male nematode was pierced with an electrode close to the cephalic region and then exposed to pheromones from virgin females. Cellular responses in the form of action potentials were recorded as spike activity. The spike frequency produced by G. rostochiensis and G. pallida males increased significantly after the application of their homospecific pheromone. The spike frequency produced by G. pallida males also increased significantly after the application of G. rostochiensis female sex pheromone. In contrast, males of G. rostochiensis showed no significant response to G. pallida female sex pheromone. The electrophysiological results support and considerably extend information from agar plate behavioural bioassays.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaver, P. C., Yoshida, Y. & Ash, L. R. (1964). Mating of Ancylostoma caninum in relation to blood loss in the host. Journal of Parasitology 50, 286–93.CrossRefGoogle ScholarPubMed
Bone, L. W. (1987). Pheromone communication in nematodes. In Vistas in Nematology (ed. Veech, J. A. & Barker, K. R. ), pp. 147152. Hyattsville: Society of Nematologists.Google Scholar
Castro, C. E., Besler, N. O., Mckinney, H. E. & Thomason, I. J. (1989). Quantitative bioassay for chemotaxis with plant parasitic nematodes. Attractant and repellent fractions for Meloidogyne incognita from cucumber roots. Journal of Chemical Ecology 15, 1297–309.Google Scholar
Davis, E. L., Aron, L. M., Pratt, L. H. & Hussey, R. S. (1992). Novel immunization procedures used to develop antibodies that bind to specific structures in Meloidogyne spp. Phytopathology 82, 1244–50.Google Scholar
Dawson, G. W., Griffiths, D. C., Janes, N. F., Mudd, A., Pickett, J. A., Wadhams, L. J. & Woodcock, C. M. (1987). Plant derived synergists of the alarm pheromone from the turnip aphid, Lipaphis (Hyadaphis) erysimi (Homoptera, Aphididae). Journal of Chemical Ecology 13, 1663–71.CrossRefGoogle ScholarPubMed
Dawson, G. W., Griffiths, D. C., Janes, N. F., Mudd, A., Pickett, J. A., Wadhams, L. J. & Woodcock, C. M. (1990). Aphid semiochemicals - a review, and recent advances on the sex pheromones. Journal of Chemical Ecology 16, 3019–30.CrossRefGoogle Scholar
Dusenbery, D. B. (1983). Chemotactic behaviour of nematodes. Journal of Nematology 5, 168–73.Google Scholar
Green, C. D. (1980). Nematode sex attractants. Helminthological Abstracts, Series B 49, 327–39.Google Scholar
Greenaway, P. (1970). Sodium regulation in the freshwater mollusc Limnaea stagnalis L.) (Gastropoda, Pulmonata). Journal of Experimental Biology 53, 147–63.Google Scholar
Greet, D. N. (1964). Observations on sexual attraction and copulation in the nematode Panagrolaimus rigidus Schneider. Nature, London 204, 96–7.CrossRefGoogle Scholar
Greet, D. N., Green, C. D. & Poulton, M. E. (1968). Extraction, standardisation and assessment of the volatility of the sex attractants of Heterodera rostochiensis and H. schactii. Annals of Applied Biology 65, 511–19.Google Scholar
Huettel, R. N., Dickson, D. W. & Kaplan, D. T. (1982). Sex attractants and behaviour in the two races of Radopholus similis. Nematologica 28, 360–9.Google Scholar
Jaffe, H., Huettel, R. N., Demilo, A. B., Haynes, D. K. & Rebois, R. V. (1989). Isolation and identification of a compound from soybean cyst nematode, Heterodera glycines, with sex pheromone activity. Journal of Chemical Ecology 15, 2031–3.Google Scholar
Jones, T. P. (1966). Sexual attraction and copulation in Pelodera teres. Nematologica 2, 518–22.Google Scholar
Jones, J. T., Perry, R. N. & Johnston, M. R. L. (1991). Electrophysiological recordings of electrical activity and responses to stimulants from Globodera rostochiensis and Syngamus trachea. Revue de Nematologie 14, 467–73.Google Scholar
Kaplan, J. M. & Horvitz, H. R. (1993). A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 90, 2227–31.CrossRefGoogle ScholarPubMed
Pline, M. & Dusenbery, D. B. (1987). Response of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera computer tracking. Journal of Chemical Ecology 13, 873–88.Google Scholar
Riddle, D. L. & Bird, A. F. (1985). Responses of the plant parasitic nematodes Rotylenchulus reniformis, Anguina agrostis and Meloidogyne javanica to chemical attractants. Journal of Nematology 91, 185–95.Google ScholarPubMed
Riga, E. (1992). Multifaceted approach for differentiating isolates of Bursaphelenchus xylophilus and B. mucronatus (Nematoda), parasites of pine trees. Ph. D. thesis. Simon Fraser University, Burnaby B. C., Canada.Google Scholar
Riga, E. & Webster, J. M. (1992). Use of sex pheromones in the taxonomic separation of Bursaphelenchus spp. (Nematoda), pathogens of pine trees. Nematologica 38, 133–45.CrossRefGoogle Scholar
Riga, E., Perry, R. N., Barrett, J. & Johnston, M. R. L. (1995). Investigation of the chemosensory function of amphids of Syngamus trachea using electrophysiological techniques. Parasitology 111, 347–51.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1981). The Principles and Practice of Statistics in Biological Research, 2nd edn. New York: W. H. Freeman.Google Scholar
Stewart, G. R., Perry, R. N. & Wright, D. J. (1993). Studies on the amphid specific glycoprotein gp32 in different life cycle stages of Meloidogyne species. Parasitology 107, 573–8.CrossRefGoogle Scholar
Stewart, G. R., Perry, R. N., Alexander, J. & Wright, D. J. (1993). A glycoprotein specific to the amphids of Meloidogyne species. Parasitology 106, 405–12.Google Scholar
Trett, M. W. & Perry, R. N. (1985). Effects of carbamoyloxime, aldicarb, on the ultrastructure of the root-lesion nematode, Pratylenchus penetrans (Nematoda: Pratylenchidae). Nematologica 31, 321–34.CrossRefGoogle Scholar
Wadhams, L. J., Angst, M. E. & Blight, M. M. (1982). Responses of the olfactory receptors of Scolytus scolytus (F.) (Coleoptera: Scolytidae) to the stereoisomers of 4-methyl-3-heptanol. Journal of Chemical Ecology 8, 477–92.CrossRefGoogle Scholar