Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:13:51.412Z Has data issue: false hasContentIssue false

Effects of miltefosine treatment in fibroblast cell cultures and in mice experimentally infected with Neospora caninum tachyzoites

Published online by Cambridge University Press:  06 February 2012

KARIM DEBACHE
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
ANDREW HEMPHILL*
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
*
*Corresponding author: andrew.hemphill@vetsuisse.unibe.ch

Summary

Miltefosine was investigated for its activity against Neospora caninum tachyzoites in vitro, and was shown to inhibit the proliferation of N. caninum tachyzoites cultured in human foreskin fibroblasts (HFF) with an IC50 of 5·2 μM. Treatment of infected cells with 25 μM miltefosine for a period of 10 h had only a parasitostatic effect, while after 20 h of treatment parasiticidal effects were observed. This was confirmed by transmission electron microscopy of N. caninum-infected and miltefosine-treated HFF. Administration of miltefosine to N. caninum-infected Balb/c female mice at 40 mg/kg/day for 14 days resulted in 6 out of 10 mice exhibiting weight loss, ruffled coat and apathy between days 7 and 13 post-infection. In the group that received placebo, only 2 out of 8 mice succumbed to infection, but the cerebral burden was significantly higher compared to the miltefosine treatment group. In a second experiment, the time-span of treatment was reduced to 5 days, and mice were maintained without further treatment for 4 weeks. Only 2 out of 9 mice in the miltefosine treatment group exhibited signs of disease, while 8 out of 10 mice succumbed to infection in the placebo group. These results showed that miltefosine hampered the dissemination of parasites into the CNS during experimental N. caninum infection in mice.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alaeddine, F., Keller, N., Leepin, A. and Hemphill, A. (2005). Reduced infection and protection from clinical signs of cerebral neosporosis in C57BL/6 mice vaccinated with recombinant microneme antigen NcMIC1. Journal of Parasitology 91, 657665.Google Scholar
Barratt, G., Saint-Pierre-Chazalet, M. and Loiseau, P. M. (2009). Cellular transport and lipid interactions of miltefosine. Current Drug Metabolism 10, 247255.CrossRefGoogle ScholarPubMed
Bhattacharya, S. K., Sinha, P. K., Sundar, S., Thakur, C. P., Jha, T. K., Pandey, K., Das, V. R., Kumar, N., Lal, C., Verma, N., Singh, V. P., Ranjan, A., Verma, R. B., Anders, G., Sinderman, H. and Ganguly, N. K. (2007). Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. Journal of Infectious Diseases 196, 591598.CrossRefGoogle ScholarPubMed
Cannas, A., Naguleswaran, A., Müller, N., Gottstein, B., Eperon, S. and Hemphill, A. (2003 a). Vaccination of mice against experimental N. caninum infection using NcSAG1- and NcSRS2-based recombinant antigens and DNA-vaccines. Parasitology 126, 303312.CrossRefGoogle ScholarPubMed
Cannas, A., Naguleswaran, A., Müller, N., Gottstein, B. and Hemphill, A. (2003 b). Reduced cerebral infection of Neospora caninum-infected mice after vaccination with recombinant microneme protein NcMIC3 and ribi adjuvant. Journal of Parasitology 89, 4450.CrossRefGoogle ScholarPubMed
Choubey, V., Maity, P., Guha, M., Kumar, S., Srivastava, K., Puri, S. K. and Bandyopadhyay, U. (2007). Inhibition of Plasmodium falciparum choline kinase by hexadecyltrimethylammonium bromide: a possible antimalarial mechanism. Antimicrobial Agents and Chemotherapy 51, 696706.Google Scholar
Croft, S. L., Snowdon, D. and Yardley, V. (1996). The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Antimicrobial Agents and Chemotherapy 6, 1041–7.CrossRefGoogle Scholar
Croft, S. L., Engel, J. (2006). Miltefosine–discovery of the antileishmanial activity of phospholipid derivatives. Transactions of the Royal Society of Tropical Medicine and Hygiene 100, S4S8.CrossRefGoogle ScholarPubMed
Darius, A. K., Mehlhorn, H. and Heydorn, A. O. (2004). Effects of toltrazuril and ponazuril on the fine structure and multiplication of tachyzoites of the NC-1 strain of Neospora caninum (a synonym of Hammondia heydorni) in cell cultures. Parasitology Research 92, 453458.CrossRefGoogle ScholarPubMed
Debache, K., Alaeddine, F., Guionaud, C., Monney, T., Müller, J., Strohbusch, M., Leib, S. L., Grandgirard, D. and Hemphill, A. (2009). Vaccination with recombinant NcROP2 combined with recombinant NcMIC1 and NcMIC3 reduces cerebral infection and vertical transmission in mice experimentally infected with Neospora caninum tachyzoites. International Journal for Parasitology 39, 13731384.Google Scholar
Debache, K., Guionaud, C., Kropf, C., Boykin, D. and Hemphill, A. (2011). Experimental treatment of Neospora caninum-infected mice with the arylimidamide DB750 and the thiazolide nitazoxanide. Experimental Parasitology 129, 95100.Google Scholar
Dubey, J. P., Hattel, A. L., Lindsay, D. S. and Topper, M. J. (1988). Neonatal Neospora caninum infection in dogs: isolation of the causative agent and experimental transmission. Journal of the American Veterinary Medical Association 193, 12591263.Google Scholar
Dubey, J.P. and Schares, G. (2011). Neosporosis in animals the last five years. Veterinary Parasitology 180, 90108.Google Scholar
Dubey, J. P., Schares, G. and Ortega-Mora, L. M. (2007). Epidemiology and control of neosporosis and Neospora caninum. Clinical Microbiology. Microbiology Reviews 20, 323367.CrossRefGoogle ScholarPubMed
Escobar, P., Yardely, V., and Croft, S. L. (2001). Activities of hexadecylphosphocholine (Miltefosine), AmBisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in immunodeficient scid mice. Antimicrobial Agents and Chemotherapy 45, 18721875.CrossRefGoogle ScholarPubMed
Esposito, M., Moores, S., Naguleswaran, A., Mueller, J. and Hemphill, A. (2007 a). Induction of tachyzoite egress from cells infected with the protozoan Neospora caninum by nitro- and bromo-thiazolides, a class of broad-spectrum anti-parasitic drugs. International Journal for Parasitology 37, 11431152.Google Scholar
Esposito, M., Muller, N. and Hemphill, A. (2007 b). Structure-activity relationships from in vitro efficacies of the thiazolide series against the intracellular apicomplexan protozoan Neospora caninum. International Journal for Parasitology 37, 183190.Google Scholar
Esposito, M., Stettler, R., Moores, S. L., Pidathala, C., Muller, N., Stachulski, A., Berry, N. G., Rossignol, J. F. and Hemphill, A. (2005). In vitro efficacies of nitazoxanide and other thiazolides against Neospora caninum tachyzoites reveal antiparasitic activity independent of the nitro group. Antimicrobial Agents and Chemotherapy 49, 37153723.Google Scholar
Gottstein, B., Eperon, S., Dai, W. J., Cannas, A., Hemphill, A. and Greif, G. (2001). Efficacy of toltrazuril and ponazuril against experimental Neospora caninum infection in mice. Parasitology Research 87, 4348.Google Scholar
Haerdi, C., Haessig, M., Sager, H., Greif, G., Staubli, D. and Gottstein, B. (2006). Humoral immune reaction of newborn calves congenitally infected with Neospora caninum and experimentally treated with toltrazuril. Parasitology Research 99, 534540.Google Scholar
Häsler, B., Regula, G., Stärk, K. D., Sager, H., Gottstein, B. and Reist, M. (2006b). Financial analysis of various strategies for the control of Neospora caninum in dairy cattle in Switzerland. Preventive Veterinary Medicine 77, 230253.Google Scholar
Häsler, B., Stärk, K. D., Sager, H., Gottstein, B. and Reist, M. (2006 a). Simulating the impact of four control strategies on the population dynamics of Neospora caninum infection in Swiss dairy cattle. Preventive Veterinary Medicine 77, 254283.Google Scholar
Hemphill, A. (1996). Subcellular localization and functional characterization of Nc-p43, a major Neospora caninum tachyzoite surface protein. Infection and Immunity 64, 42794287.Google Scholar
Kim, J. T., Park, J. Y., Seo, H. S., Oh, H. G., Noh, J. W., Kim, J. H., Kim, D. Y. and Youn, H. J. (2002). In vitro antiprotozoal effects of artemisinin on Neospora caninum. Veterinary Parasitology 103, 5363.Google Scholar
Konstantinov, S. M., Kaminsky, R., Brun, R., Berger, M. R. and Zillmann, U. (1997). Efficacy of anticancer alkylphosphocholines in Trypanosoma brucei subspecies. Acta Tropica 64, 145154.CrossRefGoogle ScholarPubMed
Kritzner, S., Sager, H., Blum, J., Krebber, R., Greif, G. and Gottstein, B. (2002). An explorative study to assess the efficacy of toltrazuril-sulfone (ponazuril) in calves experimentally infected with Neospora caninum. Annals of Clinical Microbiology and Antimicrobials 1, 410.CrossRefGoogle ScholarPubMed
Kwon, H. J., Kim, J. H., Kim, M., Lee, J. K., Hwang, W. S. and Kim, D. Y. (2003). Anti-parasitic activity of depudecin on Neospora caninum via the inhibition of histone deacetylase. Veterinary Parasitology 112, 269276.Google Scholar
Leepin, A., Studli, A., Brun, R., Stephens, C. E., Boykin, D. W. and Hemphill, A. (2008). Host cells participate in the in vitro effects of novel diamidine analogues against tachyzoites of the intracellular apicomplexan parasites Neospora caninum and Toxoplasma gondii. Antimicrobial Agents and Chemotherapy 52, 19992008.Google Scholar
Leonard, R., Hardy, J., van Tienhoven, G., Houston, S., Simmonds, P., David, M. and Mansi, J. (2001). Randomized, double-blind, placebo-controlled, multicenter trial of 6% miltefosine solution, a topical chemotherapy in cutaneous metastases from breast cancer. Journal of Clinical Oncology 19, 41504159.Google Scholar
Lindsay, D. S. and Dubey, J. P. (1989). Evaluation of anti-coccidial drugs’ inhibition of Neospora caninum development in cell cultures. Journal of Parasitology 75, 990992.CrossRefGoogle ScholarPubMed
Lindsay, D. S. and Dubey, J. P. (1990). Effects of sulfadiazine and amprolium on Neospora caninum (Protozoa: Apicomplexa) infections in mice. Journal of Parasitology 76, 177179.CrossRefGoogle ScholarPubMed
Lindsay, D. S., Rippey, N. S., Cole, R. A., Parsons, L. C., Dubey, J. P., Tidwell, R. R. and Blagburn, B. L. (1994). Examination of the activities of 43 chemotherapeutic agents against Neospora caninum tachyzoites in cultured cells. American Journal of Veterinary Research 55, 976981.CrossRefGoogle ScholarPubMed
Lux, H., Heise, N., Klenner, T., Hart, D. and Opperdoes, F. R. (2000). Ether–lipid (alkyl-phospholipid) metabolism and the mechanism of action of ether–lipid analogues in Leishmania. Molecular and Biochemical Parasitology 111, 114.CrossRefGoogle ScholarPubMed
Monney, T., Debache, K. and Hemphill, A. (2011). Vaccines against a major cause of abortion in cattle, Neospora caninum infection. Animals 1, 306325.Google Scholar
Müller, N., Vonlaufen, N., Gianinazzi, C., Leib, S. L. and Hemphill, A. (2002). Application of real time fluorescent PCR for quantitative assessment of Neospora caninum infections in organotypic slice cultures of rat central nervous tissue. Journal of Clinical Microbiology 40, 252255.Google Scholar
Oliveira, L. F., Schubach, A. O., Martins, M. M., Passos, S. L., Oliveira, R. V., Marzochi, M. C. and Andrade, C. A. (2011). Systematic review of the adverse effects of cutaneous Leishmaniasis treatment in the New World. Acta Tropica 118, 8796.Google Scholar
Paris, C., Loiseau, P. M., Bories, C. and Bréard, J. (2004). Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy 48, 852859.CrossRefGoogle ScholarPubMed
Perez-Victoria, F. J., Sanchez-Canete, M. P., Seifert, K., Croft, S. L., Sundar, S., Castanys, S. and Gamarro, F. (2006). Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use. Drug Resistance Updates 9, 2639.Google Scholar
Pessi, G., Kociubinski, G. and Mamoun, C. B. (2004). A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proceedings of the National Academy of Sciences, USA 101, 62066211.CrossRefGoogle ScholarPubMed
Rakotomanga, M., Blanc, S., Gaudin, K., Chaminade, P. and Loiseau, P. M. (2007). Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy 51, 14251430.Google Scholar
Schuster, F. L., Guglielmo, B. J. and Visvesvara, G. S. (2006). In-vitro activity of miltefosine and voriconazole on clinical isolates of free-living amebas: Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri. Journal of Eukaryotic Microbiology 53, 121126.Google Scholar
Seifert, K., Duchêne, M., Wernsdorfer, W. H., Kollaritsch, H., Scheiner, O., Wiedermann, G., Hottkowitz, T. and Eibl, H. (2001). Effects of miltefosine and other alkylphosphocholines on human intestinal parasite Entamoeba histolytica. Antimicrobial Agents and Chemotherapy 45, 15051510.Google Scholar
Shahiduzzaman, M., Dyachenko, V., Obwaller, A., Unglaube, S. and Daugschies, A. (2009). Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum. Veterinary Parasitology 162, 271277.Google Scholar
Strohbusch, M., Müller, N., Hemphill, A., Krebber, R., Greif, G. and Gottstein, B. (2009). Toltrazuril treatment of congenitally acquired Neospora caninum infection in newborn mice. Parasitology Research 104, 13351343.Google Scholar
Unger, C., Damenz, W., Fleer, E. A., Kim, D. J., Breiser, A., Hilgard, P., Engel, J., Nagel, G. and Eibl, H. (1989). Hexadecylphosphocholine, a new ether lipid analogue. Studies on the antineoplastic activity in vitro and in vivo. Acta Oncologica 28, 213217.CrossRefGoogle ScholarPubMed
Vonlaufen, N., Guetg, N., Naguleswaran, A., Müller, N., Björkman, C., Schares, G., von Blumroeder, D., Ellis, J. and Hemphill, A. (2004). In vitro induction of Neospora caninum bradyzoites in vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites and bradyzoites. Infection and Immunity 72, 576583.Google Scholar
Vonlaufen, N., Müller, N., Keller, N., Naguleswaran, A., Bohne, W., McAllister, M. M., Björkman, C., Müller, E., Caldelari, R. and Hemphill, A. (2002). Exogenous nitric oxide triggers Neospora caninum tachyzoite-to-bradyzoite stage conversion in murine epidermal keratinocyte cell cultures. International Journal for Parasitology 32, 12531265.Google Scholar
Walochnik, J., Duchene, M., Seifert, K., Obwaller, A., Hottkowitz, T., Wiedermann, G., Eibl, H. and Aspöck, H. (2002). Cytotoxic activities of alkylphosphocholines against clinical isolates of Acanthamoeba spp. Antimicrobial Agents and Chemotherapy 46, 695701.CrossRefGoogle ScholarPubMed
Youn, H. J., Lakritz, J., Rottinghaus, G. E., Seo, H. S., Kim, D. Y., Cho, M. H. and Marsh, A. E. (2004). Anti-protozoal efficacy of high performance liquid chromatography fractions of Torilis japonica and Sophora flavescens extracts on Neospora caninum and Toxoplasma gondii. Veterinary Parasitology 125, 409414.Google Scholar
Supplementary material: File

Debache Supplementary Table

Supplementary Table 1. Supplementary data showing the day of euthanasia (if clinical signs occurred prior to termination of the experiment) and the cerebral parasite burden for each individual mouse as determined by real time PCR

Download Debache Supplementary Table(File)
File 57.9 KB