Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T19:46:49.095Z Has data issue: false hasContentIssue false

Effect of host populations on the intensity of ticks and the prevalence of tick-borne pathogens: how to interpret the results of deer exclosure experiments

Published online by Cambridge University Press:  28 April 2008

A. PUGLIESE*
Affiliation:
Department of Mathematics, University of Trento, Povo (TN), Italy
R. ROSÀ
Affiliation:
Centre for Alpine Ecology, Edmund Mach Foundation, Viote del Monte Bondone (TN), Italy
*
*Corresponding author: Andrea Pugliese, Department of Mathematics, University of Trento, Via Sommarive 14, 38050 Povo (TN) – Italy. Tel: +39 0461 881519. Fax: +39 0461 881624. Email: pugliese@science.unitn.it

Summary

Deer are important blood hosts for feeding Ixodes ricinus ticks but they do not support transmission of many tick-borne pathogens, so acting as dead-end transmission hosts. Mathematical models show their role as tick amplifiers, but also suggest that they dilute pathogen transmission, thus reducing infection prevalence. Empirical evidence for this is conflicting: experimental plots with deer removal (i.e. deer exclosures) show that the effect depends on the size of the exclosure. Here we present simulations of dynamic models that take into account different tick stages, and several host species (e.g. rodents) that may move to and from deer exclosures; models were calibrated with respect to Ixodes ricinus ticks and tick-borne encephalitis (TBE) in Trentino (northern Italy). Results show that in small exclosures, the density of rodent-feeding ticks may be higher inside than outside, whereas in large exclosures, a reduction of such tick density may be reached. Similarly, TBE prevalence in rodents decreases in large exclosures and may be slightly higher in small exclosures than outside them. The density of infected questing nymphs inside small exclosures can be much higher, in our numerical example almost twice as large as that outside, leading to potential TBE infection risk hotspots.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, B. F., Keesing, F. and Ostfeld, R. S. (2003). Effects of habitat fragmentation on Lyme disease risk. Conservation Biology 17, 267272.CrossRefGoogle Scholar
Caraco, T., Gardner, G. and Szymanski, B. K. (1998). Lyme Disease: Self-regulation and Pathogen Invasion. Journal of Theoretical Biology 193, 561575.CrossRefGoogle ScholarPubMed
Ferrari, N., Rosà, R., Pugliese, A. and Hudson, P. J. (2007). The role of sex in parasite dynamics: model simulations on transmission of Heligmosomoides polygyrus in populations of yellow-necked mice, Apodemus flavicollis. International Journal for Parasitology 37, 341349.CrossRefGoogle ScholarPubMed
Foppa, I. M. (2005). The basic reproductive number of tick-borne encephalitis virus. Journal of Mathematical Biology 51, 616628.CrossRefGoogle ScholarPubMed
Gern, L. and Rais, O. (1996). Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). Journal of Medical Entomology 33, 189192.CrossRefGoogle ScholarPubMed
Ghosh, M. and Pugliese, A. (2004). Seasonal population dynamics of ticks, and its influence on infection transmission: a semi-discrete approach. Bulletin of Mathematical Biology 66, 16591684.CrossRefGoogle ScholarPubMed
Hudson, P. J., Norman, R., Laurenson, M. K., Newborn, D., Gaunt, M., Jones, L., Reid, H., Gould, E., Bowers, R. and Dobson, A. P. (1995). Persistence and transmission of tick-borne viruses: Ixodes ricinus and louping-ill virus in red grouse populations. Parasitology 111 (Suppl.) S49S58.CrossRefGoogle ScholarPubMed
Hudson, P. J., Rizzoli, A. P., Grenfell, B. T., Heesterbeek, H. and Dobson, A. P. (2002). The Ecology of Wildlife Diseases. Oxford University Press, Oxford.CrossRefGoogle Scholar
Humair, P. F., Rais, O. and Gern, L. (1999). Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology 118, 3342.CrossRefGoogle ScholarPubMed
Keesing, F., Holt, R. D. and Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters 9, 485498.CrossRefGoogle ScholarPubMed
Labuda, M., Nuttall, P. A., Kozuch, O., Eleckova, E., Williams, T., Zuffova, E. and Sabo, A. (1993). Non-viraemic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia 49, 802805.CrossRefGoogle ScholarPubMed
Norman, R., Bowers, B. G., Begon, M. and Hudson, P. J. (1999). Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition. Journal of Theoretical Biology 200, 111118.CrossRefGoogle ScholarPubMed
O'Callaghan, C. J., Medley, G. F., Peter, T. F. and Perry, B. D. (1998). Investigating the epidemiology of heartwater by means of a transmission dynamics model. Parasitology 117, 4961.CrossRefGoogle ScholarPubMed
Ogden, N. H., Bigras-Poulin, M., O'Callaghan, C. J., Barker, J. M., Kurtenbach, K., Lindsay, L. R. and Charron, D. F. (2007). Vector seasonality, host infection dynamics and fitness of pathogens transmitted by the tick Ixodes scapularis. Parasitology 134, 209227.CrossRefGoogle ScholarPubMed
Ostfeld, R. S. and Keesing, F. (2000). Biodiversity and disease risk: the case of Lyme disease. Conservation Biology 14, 722728.CrossRefGoogle Scholar
Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A. P. and Hudson, P. J. (2006). Localized deer absence leads to tick amplification. Ecology 87, 19811986.CrossRefGoogle ScholarPubMed
Randolph, S. E., Chemini, C., Furlanello, C., Genchi, C., Hails, R. A., Hudson, P. J., Jones, L. D., Medley, G. F., Norman, R., Rizzoli, A. P., Smith, G. and Woolhouse, M. E. J. (2002 a). The ecology of tick-borne infections in wildlife reservoirs. In The Ecology of Wildlife Diseases (ed.Hudson, P. J., Rizzoli, A. P., Grenfell, B. T., Heesterbeek, H. and Dobson, A. P.), pp. 119138. Oxford University Press, Oxford.CrossRefGoogle Scholar
Randolph, S. E., Gern, L. and Nuttall, P. A. (1996). Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitology Today 12, 472479.CrossRefGoogle ScholarPubMed
Randolph, S. E., Green, R. M., Hoodless, A. N. and Peacey, M. F. (2002 b). An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. International Journal for Parasitology 32, 979989.CrossRefGoogle ScholarPubMed
Randolph, S. E., Green, R. M., Peacey, M. F. and Rogers, D. J. (2000). Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121, 1523.CrossRefGoogle ScholarPubMed
Randolph, S. E., Miklisova, D., Lysy, J., Rogers, D. J. and Labuda, M. (1999). Incidence from coincidence: patterns of tick infestations in rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118, 177186.CrossRefGoogle ScholarPubMed
Randolph, S. E. and Rogers, D. J. (1997). A generic population model for the African tick Rhipicephalus appendiculatus. Parasitology 115, 265279.CrossRefGoogle ScholarPubMed
Rosà, R. (2003). The importance of aggregation in the dynamics of host–parasite interaction in wildlife: a mathematical approach, Ph.D. Thesis, University of Stirling, Scotland, UK, 2003 (available online at http://hdl.handle.net/1893/50).Google Scholar
Rosà, R. and Pugliese, A. (2007). Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Mathematical Biosciences 208, 216240.CrossRefGoogle ScholarPubMed
Rosà, R., Pugliese, A., Ghosh, M., Perkins, S. E. and Rizzoli, A. P. (2007). Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector-Borne and Zoonotic Diseases 7, 285295.CrossRefGoogle ScholarPubMed
Rosà, R., Pugliese, A., Norman, R. and Hudson, P. J. (2003). Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation. Journal of Theoretical Biology 224, 359376.CrossRefGoogle ScholarPubMed
Schwartzenberger, T. and Klingel, H. (1995). Telemetrische Untersuchung zur Raumnutzung und Activitätsrhythmik freilebender Gelbhalsmäuse Apodemus flavicollis Melchior, 1834. Zeitschrift für Säugetierkunde 60, 2032.Google Scholar
Sonenshine, D. E. (1991). Biology of Ticks. Oxford University Press, Oxford.Google Scholar
Van Buskirk, J. and Ostfeld, R. S. (1995). Controlling Lyme disease by modifying the density and species composition of tick hosts. Ecological Applications 5, 11331140.CrossRefGoogle Scholar
Wikel, S. K. (1996). Host immunity to tick. Annual Review of Entomology 41, 122.CrossRefGoogle Scholar
Supplementary material: PDF

Pugliese Supplementary Material

Supplementary Material.pdf

Download Pugliese Supplementary Material(PDF)
PDF 25.6 KB