Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:29:41.004Z Has data issue: false hasContentIssue false

Differentiation of isolates in the genus Steinernema (Nematoda: Steinernematidae).by random amplified polymorphic DNA fragments and morphological characters

Published online by Cambridge University Press:  06 April 2009

J. Liu
Affiliation:
Department of Entomology, Oregon State University, Corvallis, OR 97331–2907, USA
R. E. Berry
Affiliation:
Department of Entomology, Oregon State University, Corvallis, OR 97331–2907, USA

Summary

We combined polymerase chain reaction (PCR) amplification of DNA sequences and important morphological characters as a technique to differentiate nematode isolates in the genus Steinernema. Five decamer oligonucleotide primers were used to generate random amplified polymorphic DNA (RAPD) fragments from 11 nematode isolates. The primers generated 8–12 fragments, ranging from 220 to 1300 bp in size. Reproducible amplified DNA fragments of 11 isolates showed obviously inter- or intra-specific polymorphisms, enabling us to differentiate easily the nematode species and isolates. Combining RAPD–PCR fragments with the examination of morphological characters of infective juveniles and 1st-generation males, we identified isolate OH1S, collected from Newport, Oregon, as S.feltiae; isolate OS21, collected from Grants Pass, Oregon, belonged to a previously undescribed species. Our study may provide a rapid and reliable method for the identification of Steinernema nematodes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barral, V., This, P., Imbert-Establet, D., Combes, C. & Delseny, M. (1993). Genetic variability and evolution of the Schistosoma genome analyzed by using random amplified polymorphic DNA markers. Molecular and Biochemical Parasitology 59, 211–22.CrossRefGoogle Scholar
Bedding, R. A., Molyneux, A. S. & Akhurst, R. J. (1983). Heterorhabditis spp., Neoaplectana spp. and Steinernema kraussei: interspecific and intraspecific differences in infectivity to insects. Experimental Parasitology 55, 249–57.CrossRefGoogle ScholarPubMed
Cabanillas, H. E. Jr, Poinar, G. O. & Raulston, J. R. (1994). Steinernema riobravis n. sp. (Rhabditida: Steinernematidae) from Texas. Fundamental and Applied Nematology 17, 123–31.Google Scholar
Caswell-Chen, E., Williamson, V. M. & Wu, F. F. (1992). Random amplified polymorphic DNA analysis of Heterodera cruciferae and H. schachtii populations. Journal of Nematology 24, 343–51.Google ScholarPubMed
Curran, J. (1990). Molecular techniques in taxonomy. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 6374. Boca Raton, FL: CRC Press.Google Scholar
Curran, J. (1991). Application of DNA analysis to nematode taxonomy. In Manual of Agricultural Nematology (ed. Nickle, W. R.), pp. 125–43. New York, NY: Marcel Dekker, Inc.Google Scholar
Curran, J., Baillie, D. L. & Webster, J. M. (1985). Use of restriction fragment length differences in genomic DNA to identify nematode species. Parasitology 90, 137–44.CrossRefGoogle Scholar
Hedrick, P. (1992). Shooting the RAPDs. Nature, London 355, 679–80.CrossRefGoogle Scholar
Kaukas, A., Neto, E. D., Simpson, A. J. G., Southgate, V. R. & Rollinson, D. (1994). A phylogenetic analysis of Schistosoma haematobium group species based on randomly amplified polymorphic DNA. International Journal for Parasitology 24, 285–90.CrossRefGoogle ScholarPubMed
Kaya, H. K. & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology 38, 181206.CrossRefGoogle Scholar
Liu, J. (1990). The description of new species and taxonomic study of the genus: Steinernema Travassos and Heterorhabditis Poinar (Entomopathogenic nematodes). Ph.D. thesis, South China Agricultural University, Guangzhou, China.Google Scholar
Liu, J. & Berry, R. E. (1995 a). Natural distribution of entomopathogenic nematodes (Steinernematidae & Heterorhabditidae) in Oregon soils. Environmental Entomology 24, 159–63.CrossRefGoogle Scholar
Liu, J. & Berry, R. E. (1995 b). Determination of PCR conditions for RAPD analysis in entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). Journal of Invertebrate Pathology 65, 7981.CrossRefGoogle ScholarPubMed
Nei, M. & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 74, 5267–73.Google Scholar
Nguyen, K. B. & Smart, G. C. Jr (1992). Steinernema neocurtillis n. sp. (Rhabditida: Steinernematidae) and a key to species of the genus Steinernema. Journal of Nematology 24, 463–77.Google Scholar
Poinar, G. O. Jr, (1986). Recognition of Neoaplectana species (Steinernematidae: Rhabditida). Proceedings of the Helminthological Society of Washington 53, 121–9.Google Scholar
Poinar, G. O. Jr, (1990). Taxonomy and biology of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H. K.), pp. 2361. Boca Raton, FL: CRC Press.Google Scholar
Poinar, G. O. Jr, & Kozodoi, E. M. (1988). Neodplectano glaseri and N. anmnali: sibling species or parallelism? Revue de Nématologie 11, 1319.Google Scholar
Reid, A. P. & Hominick, W. M. (1992). Restriction fragment length polymorphisms within the ribosomal DNA repeat unit of British entomopathogenic nematodes (Rhabditida: Steinernematidae). Parasitology 105, 317–23.CrossRefGoogle Scholar
Reid, A. P. & Hominick, W. M. (1993). Cloning of the rDNA repeat unit from a British entomopathogenic nematode (Steinernematidae) and its potential for species identification. Parasitology 107, 529–36.CrossRefGoogle Scholar
Tighe, P. J., Goyal, P. K., Wilson, Z. A., Wakelin, D. & Pritchard, D. I. (1994). Analysis of genetic variation in isolates of Trichinella using random amplified polymorphic DNA. Molecular and Biochemical Parasitology 63, 175–8.CrossRefGoogle ScholarPubMed
Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 7213–18.CrossRefGoogle ScholarPubMed
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–5CrossRefGoogle ScholarPubMed