Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:02:31.046Z Has data issue: false hasContentIssue false

Differential effects of α-helical and β-hairpin antimicrobial peptides against Acanthamoeba castellanii

Published online by Cambridge University Press:  02 June 2009

R. S. SACRAMENTO
Affiliation:
Departamento de Oftalmologia, Universidade Federal de São Paulo, SP, Brazil
R. M. MARTINS
Affiliation:
Departamento de Microbiologia, Imunologia, Parasitologia, Universidade Federal de São Paulo, SP, Brazil
A. MIRANDA
Affiliation:
Departamento de Biofísica, Universidade Federal de São Paulo, SP, Brazil
A. S. S. DOBROFF
Affiliation:
Departamento de Microbiologia, Imunologia, Parasitologia, Universidade Federal de São Paulo, SP, Brazil
S. DAFFRE
Affiliation:
Departamento de Parasitologia, Universidade São Paulo, São Paulo, SP, Brazil
A. S. FORONDA
Affiliation:
Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade São Paulo, São Paulo, SP, Brazil
D. DE FREITAS
Affiliation:
Departamento de Oftalmologia, Universidade Federal de São Paulo, SP, Brazil
S. SCHENKMAN*
Affiliation:
Departamento de Microbiologia, Imunologia, Parasitologia, Universidade Federal de São Paulo, SP, Brazil
*
*Corresponding author: Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Botucatu 862, 8A–04023-062, São Paulo, SP, Brazil. Tel: +5511 55751996. E-mail: sschenkman@unifesp.br

Summary

In this work we evaluated the ability of different types of antimicrobial peptides to promote permeabilization and growth inhibition of Acanthamoeba castellanii trophozoites, which cause eye keratitis. We used cationic α-helical peptides P5 and P6, corresponding to the N-terminus of the pore-forming protein from Triatoma infestans, a blood-sucking insect, and a β-hairpin amphipathic molecule (gomesin), of the spider Acanthoscurria gomesiana haemocytes. A. castellanii permeabilization was obtained after 1 h incubation with micromolar concentrations of both types of peptides. While permeabilization induced by gomesin increased with longer incubations, P5 permeabilization did not increase with time and occurred at doses that are more toxic for SIRC cells. P5, however, at doses below the critical dose used to kill rabbit corneal cells was quite effective in promoting growth inhibition. Similarly, P5 was more effective when serine protease inhibitor was added simultaneously to the permeabilization assay. High performance chromatography followed by mass spectrometry analysis confirmed that, in contrast to gomesin, P5 is hydrolysed by A. castellanii culture supernatants. We conclude that the use of antimicrobial peptides to treat A. castellanii infections requires the search of more specific peptides that are resistant to proteolysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abedin, A., Mohammed, I., Hopkinson, A. and Dua, H. S. (2008). A novel antimicrobial peptide on the ocular surface shows decreased expression in inflammation and infection. Investigative Ophthalmology & Visual Science 49, 2833. doi:10.1167/iovs.07-0645.CrossRefGoogle Scholar
Amino, R., Martins, R. M., Procopio, J., Hirata, I. Y., Juliano, M. A. and Schenkman, S. (2002). Trialysin, a novel pore-forming protein from saliva of hematophagous insects activated by limited proteolysis. Journal of Biological Chemistry 277, 62076213. doi:10.1074/jbc.M109874200.Google Scholar
Barbosa, F. M., Daffre, S., Maldonado, R. A., Miranda, A., Nimrichter, L. and Rodrigues, M. L. (2007). Gomesin, a peptide produced by the spider Acanthoscurria gomesiana, is a potent anticryptococcal agent that acts in synergism with fluconazole. FEMS Microbiology Letters 274, 279286. doi:10.1074/jbc.M109874200.CrossRefGoogle ScholarPubMed
Boman, H. G. (2003). Antibacterial peptides: basic facts and emerging concepts. Journal of Internal Medicine 254, 197215. doi:10.1046/j.1365-2796.2003.01228.x.Google Scholar
Borazjani, R. N., May, L. L., Noble, J. A., Avery, S. V. and Ahearn, D. G. (2000). Flow cytometry for determination of the efficacy of contact lens disinfecting solutions against Acanthamoeba spp. Applied and Environmental Microbiology 66, 10571061.CrossRefGoogle ScholarPubMed
Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology 3, 238250. doi:10.1038/nrmicro1098.CrossRefGoogle ScholarPubMed
Brown, K. L. and Hancock, R. E. (2006). Cationic host defense (antimicrobial) peptides. Current Opinion in Immunology 18, 2430. doi:10.1016/j.coi.2005.11.004.CrossRefGoogle ScholarPubMed
Bulet, P., Stocklin, R. and Menin, L. (2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunological Reviews 198, 169184. doi:10.1111/j.0105-2896.2004.0124.x.Google Scholar
Clarke, D. W. and Niederkorn, J. Y. (2006 a). The immunobiology of Acanthamoeba keratitis. Microbes and Infection 8, 14001405. doi:10.1016/j.micinf.2005.12.009.CrossRefGoogle ScholarPubMed
Clarke, D. W. and Niederkorn, J. Y. (2006 b). The pathophysiology of Acanthamoeba keratitis. Trends in Parasitology 22, 175180. doi:10.1016/j.pt.2006.02.004.CrossRefGoogle ScholarPubMed
Dudley, R., Alsam, S. and Khan, N. A. (2008). The role of proteases in the differentiation of Acanthamoeba castellanii. FEMS Microbiology Letters 286, 9–15. doi:10.1111/j.1574-6968.2008.01249.x.Google Scholar
Fazio, M. A., Oliveira, V. X. Jr., Bulet, P., Miranda, M. T., Daffre, S. and Miranda, A. (2006). Structure-activity relationship studies of gomesin: importance of the disulfide bridges for conformation, bioactivities, and serum stability. Biopolymers 84, 205218. doi:10.1002/bip.20396.Google Scholar
Feldman, S. T., Speaker, M. and Cleveland, P. (1991). Effect of magainins on Acanthamoeba castellanii. Review of Infectious Diseases 13 (Suppl 5), S439.CrossRefGoogle ScholarPubMed
Gooi, P., Lee-Wing, M., Brownstein, S., El Defrawy, S., Jackson, W. B. and Mintsioulis, G. (2008). Acanthamoeba keratitis: persistent organisms without inflammation after 1 year of topical chlorhexidine. Cornea 27, 246248. doi:10.1097/ICO.0b013e31815b82a2.CrossRefGoogle ScholarPubMed
Herz, N. L., Matoba, A. Y. and Wilhelmus, K. R. (2008). Rapidly progressive cataract and iris atrophy during treatment of Acanthamoeba keratitis. Ophthalmology 115, 866869. doi:10.1016/j.ophtha.2007.05.054.CrossRefGoogle ScholarPubMed
Huang, L. C., Jean, D., Proske, R. J., Reins, R. Y. and McDermott, A. M. (2007). Ocular surface expression and in vitro activity of antimicrobial peptides. Current Eye Research 32, 595609. doi:10.1080/02713680701446653.CrossRefGoogle ScholarPubMed
John, T., Lin, J. and Sahm, D. F. (1990). Acanthamoeba keratitis successfully treated with prolonged propamidine isethionate and neomycin-polymyxin-gramicidin. Annals of Ophthalmology 22, 2023.Google ScholarPubMed
Kashiwabuchi, R. T., de Freitas, D., Alvarenga, L. S., Vieira, L., Contarini, P., Sato, E., Foronda, A. and Hofling-Lima, A. L. (2008). Corneal graft survival after therapeutic keratoplasty for Acanthamoeba keratitis. Acta Ophthalmologica 86, 666669. doi:10.1111/j.1600-0420.2007.01086.x.Google Scholar
Kim, W. T., Kong, H. H., Ha, Y. R., Hong, Y. C., Jeong, H. J., Yu, H. S. and Chung, D. I. (2006). Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence. Korean Journal of Parasitology 44, 321330. doi:10.3347/kjp.2006.44.4.321.CrossRefGoogle ScholarPubMed
Kuhn-Nentwig, L. (2003). Antimicrobial and cytolytic peptides of venomous arthropods. Cellular and Molecular Life Sciences 60, 26512668. doi:10.1007/s00018-003-3106-8.CrossRefGoogle ScholarPubMed
Kulkarni, M. M., McMaster, W. R., Kamysz, E., Kamysz, W., Engman, D. M. and McGwire, B. S. (2006). The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Molecular Microbiology 62, 14841497. doi:10.1111/j.1365-2958.2006.05459.x.Google Scholar
Lee, J. E., Oum, B. S., Choi, H. Y., Yu, H. S. and Lee, J. S. (2007). Cysticidal effect on acanthamoeba and toxicity on human keratocytes by polyhexamethylene biguanide and chlorhexidine. Cornea 26, 736741. doi:10.1097/ICO.0b013e31805b7e8e.CrossRefGoogle ScholarPubMed
Mandard, N., Bulet, P., Caille, A., Daffre, S. and Vovelle, F. (2002). The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. European Journal of Biochemistry 269, 11901198. doi:10.1046/j.0014-2956.2002.02760.x.CrossRefGoogle ScholarPubMed
Martins, R. M., Sforca, M. L., Amino, R., Juliano, M. A., Oyama, S. Jr., Juliano, L., Pertinhez, T. A., Spisni, A. and Schenkman, S. (2006). Lytic activity and structural differences of amphipathic peptides derived from trialysin. Biochemistry 45, 17651774. doi:10.1021/bi0514515.CrossRefGoogle ScholarPubMed
Mattana, A., Biancu, G., Alberti, L., Accardo, A., Delogu, G., Fiori, P. L. and Cappuccinelli, P. (2004). In vitro evaluation of the effectiveness of the macrolide rokitamycin and chlorpromazine against Acanthamoeba castellanii. Antimicrobial Agents and Chemoterapy 48, 45204527. doi:10.1128/AAC.48.12.4520-4527.2004.Google Scholar
McIntosh, R. S., Cade, J. E., Al Abed, M., Shanmuganathan, V., Gupta, R., Bhan, A., Tighe, P. J. and Dua, H. S. (2005). The spectrum of antimicrobial peptide expression at the ocular surface. Investigative Ophthalmology & Visual Science 46, 13791385. doi:10.1167/iovs.04-0607.Google Scholar
Moreira, C. K., Rodrigues, F. G., Ghosh, A., Varotti, F. P., Miranda, A., Daffre, S., Jacobs-Lorena, M. and Moreira, L. A. (2007). Effect of the antimicrobial peptide gomesin against different life stages of Plasmodium spp. Experimental Parasitology 116, 346353. doi:10.1016/j.exppara.2007.01.022.CrossRefGoogle ScholarPubMed
Na, B. K., Cho, J. H., Song, C. Y. and Kim, T. S. (2002). Degradation of immunoglobulins, protease inhibitors and interleukin-1 by a secretory proteinase of Acanthamoeba castellanii. Korean Journal of Parasitology 40, 9399. doi:10.3347/kjp.2002.40.2.93CrossRefGoogle ScholarPubMed
Neff, R. J. (1957). Purification, axenic cultivation, and description of a soil amoeba, Acanthamoeba sp. Journal of Protozoology 4, 176182. doi:10.1111/j.1550-7408.1957.tb.02505.xGoogle Scholar
Niederkorn, J. Y., Ubelaker, J. E., McCulley, J. P., Stewart, G. L., Meyer, D. R., Mellon, J. A., Silvany, R. E., He, Y. G., Pidherney, M., Martin, J. H. and Alizadeh, H. (1992). Susceptibility of corneas from various animal species to in vitro binding and invasion by Acanthamoeba castellanii. Investigative Ophthalmology & Visual Science 33, 104112.Google Scholar
Ondarza, R. N. (2007). Drug targets from human pathogenic amoebas: Entamoeba histolytica, Acanthamoeba polyphaga and Naegleria fowleri. Infectious Disorders Drug Targets 7, 266280. doi:10.2124/187152607782110059Google Scholar
Perez-Santonja, J. J., Kilvington, S., Hughes, R., Tufail, A., Matheson, M. and Dart, J. K. (2003). Persistently culture positive acanthamoeba keratitis: in vivo resistance and in vitro sensitivity. Ophthalmology 110, 15931600. doi:10.1016/S0161-6420(03)00481-0.CrossRefGoogle ScholarPubMed
Schuster, F. L. and Jacob, L. S. (1992). Effects of magainins on ameba and cyst stages of Acanthamoeba polyphaga. Antimicrobial Agents and Chemoterapy 36, 12631271.CrossRefGoogle ScholarPubMed
Silva, P. I. Jr., Daffre, S. and Bulet, P. (2000). Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. Journal of Biological Chemistry 275, 3346433470.CrossRefGoogle ScholarPubMed
Sissons, J., Alsam, S., Goldsworthy, G., Lightfoot, M., Jarroll, E. L. and Khan, N. A. (2006). Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiology 6, 42. doi:10.1186/1471-2180-6-42.Google Scholar
Taylor, W. M., Pidherney, M. S., Alizadeh, H. and Niederkorn, J. Y. (1995). In vitro characterization of Acanthamoeba castellanii cytopathic effect. Journal of Parasitology 81, 603609.Google Scholar
Xuguang, S., Yanchuang, L., Feng, Z., Shiyun, L. and Xiaotang, Y. (2006). Pharmacokinetics of chlorhexidine gluconate 0·02% in the rabbit cornea. Journal of Ocular Pharmacology and Therapeutics 22, 227230. doi:10.1089/jop.2006.22.227CrossRefGoogle ScholarPubMed