Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:36:51.429Z Has data issue: false hasContentIssue false

Cryptic Onchocerca species infecting North American cervids, with implications for the evolutionary history of host associations in Onchocerca

Published online by Cambridge University Press:  06 November 2012

QUINN S. McFREDERICK*
Affiliation:
Department of Biology, University of Rochester, Rochester, NY 14627, USA
TAMARA S. HASELKORN
Affiliation:
Department of Biology, University of Rochester, Rochester, NY 14627, USA
GUILHERME G. VEROCAI
Affiliation:
Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary AB, CanadaT2N 4N1
JOHN JAENIKE
Affiliation:
Department of Biology, University of Rochester, Rochester, NY 14627, USA
*
*Corresponding author: Department of Biology, University of Rochester, Rochester, NY 14627, USA. Tel: +011 1 512 471 7619. Fax: +011 1 512 471 3878. E-mail: quinnmcfrederick@gmail.com

Summary

Parasites in the genus Onchocerca infect humans, ruminants, camels, horses, suids, and canids, with effects ranging from relatively benign to debilitating. In North America, Onchocerca cervipedis is the sole species known to infect cervids, while at least 5 Onchocerca species infect Eurasian cervids. In this study, we report the discovery of a cervid-parasitizing Onchocerca only distantly related to O. cervipedis. To reconstruct the phylogenetic history of the genus Onchocerca, we used newly acquired DNA sequence from O. cervipedis (from moose in Northwest Territories, Canada) and from the newly discovered species (from white-tailed deer in upstate New York), as well as previously published sequences. Ancestral host reconstructions suggest that host switches have been common throughout the evolutionary history of Onchocerca, and that bovid- and cervid-parasitizing species have been particularly important sources of descendant species. North America cervids might therefore serve as a source for Onchocerca invasions into new hosts. Given the high density of deer populations, the potential for zoonotic infections may also exist. Our discovery of a new Onchocerca species with relatively limited sampling suggests that the diversity of Onchocerca associated with cervids in North America may be greater than previously thought, and surveys utilizing molecules and morphology are necessary.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. C. (2000). Nematode Parasites of Vertebrates: Their Development and Transmission. CABI, New York, NY, USA.CrossRefGoogle Scholar
Bain, O. and Schulz-Key, H. (1974). The species of Onchocerca in the red deer: redescription of O. flexuosa (Wedl, 1856) and description of O. tubingensis n. sp. and O. tarsicola n. sp. Tropenmedizin und Parasitologie 25, 437449.Google Scholar
Bain, O. and Schulz-Key, H. (1976). A fourth species of Onchocerca, O. garmsi n. sp. from the European deer. Tropenmedizin und Parasitologie 27, 474478.Google Scholar
Bandi, C., Trees, A. J. and Brattig, N. W. (2001). Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Veterinary Parasitology 98, 215238.CrossRefGoogle ScholarPubMed
Basanez, M.-G., Pion, S. D. S., Churcher, T. S., Breitling, L. P., Little, M. P. and Boussinesq, M. (2006). River blindness: a success story under threat? PLoS Med 3, e371.CrossRefGoogle ScholarPubMed
Bifaro, L., Clark, M., Clarke, K., Dente, C., DiDonato, L., Farquhar, J., Heerkens, S., Hurst, J., Kautz, E., Kirsch, A., Peil, J., Reed, E., Rielhman, D., Spierto, T. and Swift, B. (2011). Management plan for white-tailed deer in New York state 2012–2016. (ed. Conservation, N. Y. S. D. O. E.), USA.Google Scholar
Boatin, B. A. and Richards, F. O. (2006). Control of onchocerciasis. Advances in Parasitology 61, 349394.CrossRefGoogle ScholarPubMed
Casiraghi, M., Anderson, T., Bandi, C., Bazzocchi, C. and Genchi, C. (2001). A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122, 93103.CrossRefGoogle ScholarPubMed
Demiaszkiewicz, A. (1992). Onchocerca skrjabini Ruchljadev, 1964, a new parasite of roe deer in Poland. Acta Parasitologica 37, 2527.Google Scholar
Demiaszkiewicz, A. W. (1993). Redescription of Onchocerca jakutensis (Gubanov, 1964) (Nematoda, Filarioidea). Acta Parasitologica 38, 124124.Google Scholar
DeNio, R. M. and West, R. M. (1942). The foot-worm disease in deer of the northern Rocky Mountain region. Journal of Forestry 40, 540543.Google Scholar
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.CrossRefGoogle ScholarPubMed
Fukuda, M., Otsuka, Y., Uni, S., Boda, T., Daisaku, H., Hasegawa, H., Takaoka, H. and Bain, O. (2011). Zoonotic onchocerciasis in Hiroshima, Japan, and molecular analysis of a paraffin section of the agent for a reliable identification. Parasite 18, 185188.CrossRefGoogle ScholarPubMed
Grant, W. and Bowen, B. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity 89, 415426.CrossRefGoogle Scholar
Herman, C. M. and Bischoff, A. (1946). The foot worm parasite of deer. California Fish and Game 32, 182190.Google Scholar
Hibler, C. P. (1965). Description of the microfilaria of Wehrdikmansia cervipedis (Wehr and Dikmans, 1935) and observations on its location in Arizona deer. Journal of Wildlife Diseases 1, 4448.Google Scholar
Jolley, K., Chan, M.-S. and Maiden, M. (2004). mlstdbNet - distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5, 86.CrossRefGoogle ScholarPubMed
Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association 90, 773795.CrossRefGoogle Scholar
Krueger, A., Fischer, P. and Morales-Hojas, R. (2007). Molecular phylogeny of the filaria genus Onchocerca with special emphasis on Afrotropical human and bovine parasites. Acta Tropica 101, 114.CrossRefGoogle ScholarPubMed
Low, W. A. (1976). Parasites of woodland caribou in Tweedsmuir Provincial Park. Canadian Field Naturalist 90, 189191.Google Scholar
Maddison, W. P. and Maddison, D. R. (2010). Mesquite: a Modular System for Evolutionary Analysis. Version 2.74. http://mesuiteproject.org.Google Scholar
Morales-Hojas, R. (2009). Molecular systematics of filarial parasites, with an emphasis on groups of medical and veterinary importance, and its relevance for epidemiology. Infection, Genetics and Evolution 9, 748759.CrossRefGoogle ScholarPubMed
Morales-Hojas, R., Cheke, R. A. and Post, R. J. (2006). Molecular systematics of five Onchocerca species (Nematoda: Filarioidea) including the human parasite, O. volvulus, suggest sympatric speciation. Journal of Helminthology 80, 281290.Google ScholarPubMed
Morales-Hojas, R., Cheke, R. A. and Post, R. J. (2007). A preliminary analysis of the population genetics and molecular phylogenetics of Onchocerca volvulus (Nematoda: Filarioidea) using nuclear ribosomal second internal transcribed spacer sequences. Memorias do Instituto Oswaldo Cruz 102, 879882.CrossRefGoogle ScholarPubMed
Morandi, F., Krueger, A., Panarese, S., Sarli, G., Verin, R., Nicoloso, S., Benazzi, C. and Galuppi, R. (2011). First description of nodular onchocercosis (Onchocerca jakutensis) in free-ranging Italian red deer (Cervus elaphus). Journal of Wildlife Diseases 47, 963967.CrossRefGoogle Scholar
Neary, J. M., Trees, A. J., Ekale, D. D., Tanya, V. N., Hetzel, U. and Makepeace, B. L. (2010). Onchocerca armillata contains the endosymbiotic bacterium Wolbachia and elicits a limited inflammatory response. Veterinary Parasitology 174, 267276.CrossRefGoogle ScholarPubMed
Nylander, J. (2004). MrModeltest. Program distributed by the author, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden.Google Scholar
Pagel, M. and Meade, A. (2006). Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. The American Naturalist 167, 808825.CrossRefGoogle ScholarPubMed
Pagel, M., Meade, A. and Barker, D. (2004). Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53, 673684.CrossRefGoogle ScholarPubMed
Pfaar, K. M. and Hoerauf, A. M. (2006). Antibiotics which target the Wolbachia endosymbionts of filarial parasites: a new strategy for control of filariasis and amelioration of pathology. Mini-Reviews in Medicinal Chemistry 6, 203210.CrossRefGoogle Scholar
Posada, D. and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle ScholarPubMed
Rambaut, A. and Drummond, A. J. (2009). Tracer v1·5., Available from http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Robbins, D. J. and Clark, G. G. (1978). Filariasis in Missouri white-tailed deer. The Journal of Parasitology 64, 567568.CrossRefGoogle Scholar
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572.CrossRefGoogle ScholarPubMed
Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. and Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 24962497.CrossRefGoogle ScholarPubMed
Samuel, W., Barrett, M. and Lynch, G. (1976). Helminths in moose of Alberta. Canadian Journal of Zoology 54, 307312.CrossRefGoogle ScholarPubMed
Sreter, T. and Szell, Z. (2008). Onchocercosis: A newly recognized disease in dogs. Veterinary Parasitology 151, 113.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). v. 4b10. Sinauer Associates, Sunderland, MA, USA.Google Scholar
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585595.CrossRefGoogle ScholarPubMed
Takaoka, H., Fukuda, M., Otsuka, Y., Aoki, C., Uni, S. and Bain, O. (2012). Blackfly vectors of zoonotic onchocerciasis in Japan. Medical and Veterinary Entomology Published online ahead of print July 25, 2012.CrossRefGoogle ScholarPubMed
Uni, S., Bain, O., Takaoka, H., Miyashita, M. and Suzuki, Y. (2001). Onchocerca dewittei japonica n. subsp., a common parasite from wild boar in Kyushu Island, Japan. Parasite 8, 215222.CrossRefGoogle ScholarPubMed
Uni, S., Boda, T., Daisaku, K., Ikura, Y., Maruyama, H., Hasegawa, H., Fukuda, M., Takaoka, H. and Bain, O. (2010). Zoonotic filariasis caused by Onchocerca dewittei japonica in a resident of Hiroshima Prefecture, Honshu, Japan. Parasitology International 59, 477480.CrossRefGoogle Scholar
Verocai, G. G., Lejeune, M., Fuentealba, C., Hoberg, E. P. and Kutz, S. J. (2011). Defining parasite biodiversity at high latitudes of North America: new host and geographic records for Onchocerca cervipedis (Nematoda: Onchocercidae) in moose and caribou. Parasites & Vectors (in the Press).Google Scholar
Wahl, G. (1996). Identification of a common filarial larva in Simulium damnosum sl (Type D, Duke, 1967) as Onchocerca ramachandrini from the wart hog. The Journal of Parasitology 82, 520524.CrossRefGoogle ScholarPubMed
Wehr, E. and Dikmans, G. (1935). New nematodes (Filariidae) from North American ruminants. Zoologischer Anzeiger 110, 202208.Google Scholar
Weinmann, C. J., Anderson, J. R., Longhurst, W. M. and Connolly, G. (1973). Filarial worms of Columbian black-tailed deer in California. Journal of Wildlife Diseases 9, 213220.CrossRefGoogle ScholarPubMed
Werren, J. H. and Windsor, D. M. (2000). Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proceedings of the Royal Society of London, B 267, 12771285.CrossRefGoogle ScholarPubMed
Wilgenbush, J. C., Warren, D. L. and Swofford, D. L. (2004). AWTY: A System for Graphical Exploration of Convergence in Bayesian Phylogenetic Inference. http://ceb.csit.fsu.edu/awty.Google Scholar
Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. The University of Texas at Austin, TX, USA.Google Scholar
Supplementary material: File

McFrederick Supplementary Material

Appendix

Download McFrederick Supplementary Material(File)
File 18 MB