Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T19:39:15.896Z Has data issue: false hasContentIssue false

Concurrent nematode infection and pregnancy induce physiological responses that impair linear growth in the murine foetus

Published online by Cambridge University Press:  23 December 2009

M. R. ODIERE*
Affiliation:
Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
K. G. KOSKI
Affiliation:
School of Dietetics and Human Nutrition, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
H. A. WEILER
Affiliation:
School of Dietetics and Human Nutrition, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
M. E. SCOTT
Affiliation:
Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada
*
*Corresponding author: Institute of Parasitology, McGill University (Macdonald Campus), 21 111 Lakeshore Road, Ste-Anne de Bellevue, QC H9X 3V9, Canada. Tel: +514 398 8382. Fax: +514 398 7857. E-mail: maurice.odiere@mail.mcgill.ca

Summary

This study examined concurrent stresses of nematode infection and pregnancy using pregnant and non-pregnant CD1 mice infected 3 times with 0, 50 or 100 Heligmosomoides bakeri larvae. Physiological, energetic, immunological and skeletal responses were measured in maternal and foetal compartments. Resting metabolic rate (RMR) was elevated by pregnancy, but not by the trickle infection. Energy demands during pregnancy were met through increased food intake and fat utilization whereas mice lowered their body temperature during infection. Both infection and pregnancy increased visceral organ mass and both altered regional bone area and mineralization. During pregnancy, lumbar mineralization was lower but femur area and mineralization were higher. On the other hand, infection lowered maternal femur bone area and this was associated with higher IFN-γ in maternal serum of heavily infected pregnant mice. Infection also reduced foetal crown-rump length which was associated with higher amniotic fluid IL-1β.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amman, P., Rizzoli, R., Slosman, D. and Bonjour, J. P. (1992). Sequential and precise in vivo measurement of bone mineral density in rats using dual-energy X-ray absorptiometry. Journal of Bone and Mineral Research 7, 311317.CrossRefGoogle Scholar
Baron, R., Vignery, A. and Horowitz, M. (1983). Lymphocytes, macrophages and the regulation of bone remodeling. In Bone and Mineral Research, Vol. 2 (ed. Peck, W. A.), pp. 175243. Elsevier Science Publishers, New York, USA.Google Scholar
Bartholomew, G. A. (1977). Energy metabolism. In Animal Physiology: Principles and Adaptation (ed. Gordon, M. S.), pp. 75–110. Macmillan, New York, USA.Google Scholar
Behnke, J. M. and Robinson, M. (1985). Genetic control of immunity to Nematospiroides dubius: a 9-day anthelmintic abbreviated immunizing regime which separates weak and strong responder strains of mice. Parasite Immunology 7, 235253.CrossRefGoogle ScholarPubMed
Bronson, F. H. and Heideman, P. D. (1994). Seasonal regulation of reproduction in mammals. In The Physiology of Reproduction, Vol. 2 (ed. Knobil, E. and Neill, J. D.), pp. 541584. Raven, New York, USA.Google Scholar
Cable, J., Harris, P. D., Lewis, J. W. and Behnke, J. M. (2006). Molecular evidence that Heligmosomoides polygyrus from laboratory mice and wood mice are separate species. Parasitology 133, 111122.CrossRefGoogle ScholarPubMed
Casapía, M., Joseph, S. A., Núñez, C., Rahme, E. and Gyorkos, T. W. (2007). Parasite and maternal risk factors for malnutrition in preschool-age children in Belen, Peru using the new WHO Child Growth Standards. British Journal of Nutrition 98, 12591266.CrossRefGoogle ScholarPubMed
CCAC (1993). Guide to the Care and Use of Experimental Animals. Canadian Council on Animal Care. Ottawa, Canada.Google Scholar
Cliffe, L. J., Humphreys, N. E., Lane, T. E., Potten, C. S., Booth, C. and Grencis, R. K. (2005). Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308, 14631465.CrossRefGoogle ScholarPubMed
Coop, R. L. and Field, A. C. (1983). Effect of phosphorus intake on growth rate, food intake and quality of the skeleton of growing lambs infected with the intestinal nematode Trichostrongylus vitrinus. Research in Veterinary Science 35, 175181.CrossRefGoogle ScholarPubMed
Coop, R. L. and Kyriazakis, I. (1999). Nutrition-parasite interaction. Veterinary Parasitology 84, 187204.CrossRefGoogle ScholarPubMed
De Boer, H. H. and Wood, M. B. (1989). Bone changes in the vascularised fibular graft. Journal of Bone and Joint Surgery – British Volume 71, 374378.CrossRefGoogle ScholarPubMed
Deerenberg, C., Apanius, V., Daan, S. and Bos, N. (1997). Reproductive effort decreases antibody responsiveness. Proceedings of the Royal Society of London, B 264, 10211029.CrossRefGoogle Scholar
Else, K. J., Finkelman, F. D., Maliszewski, C. R. and Grencis, R. K. (1994). Cytokine-mediated regulation of chronic intestinal helminth infection. Journal of Experimental Medicine 179, 347351.CrossRefGoogle ScholarPubMed
Forbes, M. R. L. (1993). Parasitism and host reproductive effort. Oikos 67, 444450.CrossRefGoogle Scholar
Gause, W. C., Urban, J. F. Jr. and Stadecker, M. J. (2003). The immune response to parasitic helminths: insights from murine models. Trends in Immunology 24, 269277.CrossRefGoogle ScholarPubMed
Glauber, H. S., Vollmer, W. M., Nevitt, M. C., Ensrud, K. E. and Orwoll, E. S. (1995). Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. Journal of Clinical Endocrinology and Metabolism 80, 11181123.Google ScholarPubMed
Gustafsson, L., Nordling, D., Andersson, M. S., Sheldon, B. C. and Qvarnstrom, A. (1994). Infectious diseases, reproductive effort and the cost of reproduction in birds. Philosophical Transactions of the Royal Society of London, B 346, 323331.Google ScholarPubMed
Hammond, K. A. and Diamond, J. (1997). Maximal sustained energy budgets in humans and animals. Nature, London 386, 457462.CrossRefGoogle ScholarPubMed
Hart, J. S. (1971). Rodents. In Comparative Physiology of Thermoregulation, Mammals, Vol. II (ed. Whittow, G. C.), pp. 1149. Academic Press, New York, USA.Google Scholar
Houdijk, J. G., Jessop, N. S., Knox, D. P. and Kyriazakis, I. (2003). Breakdown of immunity to Nippostrongylus brasiliensis in lactating rats. British Journal of Nutrition 90, 809814.CrossRefGoogle ScholarPubMed
Jardim-Botelho, A., Brooker, S., Geiger, S. M., Fleming, F., Souza Lopes, A. C., Diemert, D. J., Correa-Oliveira, R. and Bethony, J. M. (2008). Age patterns in undernutrition and helminth infection in a rural area of Brazil: associations with ascariasis and hookworm. Tropical Medicine and International Health 13, 458467.CrossRefGoogle Scholar
Koteja, P. (1996). Measuring energy metabolism with open-flow respirometric systems: which design to choose? Functional Ecology 10, 675677.CrossRefGoogle Scholar
Kristan, D. M. (2002). Effects of intestinal nematodes during lactation: consequences for host morphology, physiology and offspring mass. Journal of Experimental Biology 205, 39553965.CrossRefGoogle ScholarPubMed
Kristan, D. M. and Hammond, K. A. (2000). Combined effects of cold exposure and sub-lethal intestinal parasites on host morphology and physiology. Journal of Experimental Biology 203, 34953504.CrossRefGoogle ScholarPubMed
Kristan, D. M. and Hammond, K. A. (2001). Parasite infection and caloric restriction induce physiological and morphological plasticity. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 281, 502510.CrossRefGoogle ScholarPubMed
Kristan, D. M. and Hammond, K. A. (2004). Aerobic performance of wild-derived house mice does not change with cold exposure or intestinal parasite infection. Physiological and Biochemical Zoology 77, 440449.CrossRefGoogle ScholarPubMed
Kristan, D. M. and Hammond, K. A. (2006). Effects of three simultaneous demands on glucose transport, resting metabolism and morphology of laboratory mice. Journal of Comparative Physiology. B, Biochemical, Systemic and Environmental Physiology 176, 139151.CrossRefGoogle ScholarPubMed
Lerner, U. H. (2006). Inflammation-induced bone remodeling in periodontal disease and the influence of post-menopausal osteoporosis. Journal of Dental Research 85, 596607.CrossRefGoogle ScholarPubMed
Lochmiller, R. L. and Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 8798.CrossRefGoogle Scholar
Mann, G. N., Jacobs, T. W., Buchinsky, F. J., Armstrong, E. C., Li, M., Ke, H. Z., Ma, Y. F., Jee, W. S. and Epstein, S. (1994). Interferon-gamma causes loss of bone volume in vivo and fails to ameliorate cyclosporin A-induced osteopenia. Endocrinology 135, 10771083.CrossRefGoogle ScholarPubMed
McClave, S. A., Lowen, C. C., Kleber, M. J., McConnell, J. W., Jung, L. Y. and Goldsmith, L. J. (2003). Clinical use of the respiratory quotient obtained from indirect calorimetry. Journal of Parenteral and Enteral Nutrition 27, 2126.CrossRefGoogle ScholarPubMed
Medina, K. L., Smithson, G. and Kincade, P. W. (1993). Suppression of B lymphopoesis during normal pregnancy. Journal of Experimental Medicine 178, 15071515.CrossRefGoogle Scholar
Miller, S. C., Shupe, J. G., Redd, E. H., Miller, M. A. and Omura, T. (1986). Changes in bone mineral and bone formation rates during pregnancy and lactation in rats. Bone 7, 283287.CrossRefGoogle ScholarPubMed
Monroy, F. G. and Enriquez, F. J. (1992). Heligmosomoides polygyrus: A model for chronic gastrointestinal helminthiasis. Parasitology Today 8, 4954.CrossRefGoogle Scholar
Nagy, T. R. and Clair, A. L. (2000). Precision and accuracy of dual-energy X-ray absorptiometry for determining in vivo body composition of mice. Obesity Research 8, 392398.CrossRefGoogle ScholarPubMed
Nanes, M. S., Rubin, J., Titus, L., Hendy, G. N. and Catherwood, B. D. (1990). Interferon-gamma inhibits 1,25-dihydroxyvitamin D3-stimulated synthesis of bone GLA protein in rat osteosarcoma cells by a pretranslational mechanism. Endocrinology 127, 588594.CrossRefGoogle ScholarPubMed
Ng'ang'a, C. J., Kanyari, P. W., Maingi, N. and Munyua, W. K. (2006). The effect of weather on the occurrence and magnitude of periparturient rise in trichostronglyid nematode egg output in Dorper ewes in a semi-arid area of Kajiado district of Kenya. Tropical Animal Health and Production 38, 389395.CrossRefGoogle Scholar
Nguyen, L., Dewhirst, F. E., Hauschka, P. V. and Stashenko, P. (1991). Interleukin-1 beta stimulates bone resorption and inhibits bone formation in vivo. Lymphokine and Cytokine Research 10, 1521.Google ScholarPubMed
Normanton, H., Jos, G. M., Houdijk, J. G. M., Jessop, N. S., Knox, D. P. and Kyriazakis, I. (2007). The effects of changes in nutritional demand on gastrointestinal parasitism in lactating rats. British Journal of Nutrition 97, 104110.CrossRefGoogle ScholarPubMed
Orsi, N. M., Gopichandran, N., Ekbote, U. V. and Walker, J. J. (2006). Murine serum cytokines throughout the estrous cycle, pregnancy and post partum period. Animal Reproduction Science 96, 5465.CrossRefGoogle ScholarPubMed
Payne, L. G., Koski, K. G., Ortega-Barria, E. and Scott, M. E. (2007). Benefit of vitamin A supplementation on ascaris reinfection is less evident in stunted children. Journal of Nutrition 137, 14551459.CrossRefGoogle ScholarPubMed
Piersma, T. and Drent, J. (2003). Phenotypic flexibility and the evolution of organismal design. Trends in Ecology and Evolution 18, 228233.CrossRefGoogle Scholar
Piersma, T. and Lindstrom, A. (1997). Rapid reversible changes in organ size as a component of adaptive behaviour. Trends in Ecology and Evolution 12, 134138.CrossRefGoogle ScholarPubMed
Romero, R., Brody, D. T., Oyarzun, E., Mazor, M., Wu, Y. K., Hobbins, J. C. and Durum, S. K. (1989). Infection and labor. III. Interleukin-1: a signal for the onset of parturition. American Journal of Obstetrics and Gynecology 160, 11171123.CrossRefGoogle ScholarPubMed
Saino, N., Calza, S. and Moller, A. (1997). Immunocompetence of nestling barn swallows in relation to brood size and parental effort. Journal of Animal Ecology 66, 827836.CrossRefGoogle Scholar
Sarafi, M. N., Garcia-Zepeda, E. A., MacLean, J. A., Charo, I. F. and Luster, A. D. (1997). Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. Journal of Experimental Medicine 185, 99–109.CrossRefGoogle ScholarPubMed
Scott, M. E. (1991). Heligmosomoides polygyrus (Nematoda): susceptible and resistant strains of mice are indistinguishable following natural infection. Parasitology 103, 429438.CrossRefGoogle ScholarPubMed
Spiegelman, B. M. and Flier, J. S. (2001). Obesity and the regulation of energy balance. Cell 104, 531543.CrossRefGoogle ScholarPubMed
Sulila, P. and Mattsson, R. (1990). Humoral immune activity in CBA/Ca mice during late pregnancy and the post-partum period. Journal of Reproductive Immunology 18, 259269.CrossRefGoogle ScholarPubMed
Sykes, A. R., Coop, R. L. and Angus, K. W. (1979). Chronic infection with Trichostrongylus vitrinus in sheep. Some effects on food utilisation, skeletal growth and certain serum constituents. Research in Veterinary Science 26, 372377.CrossRefGoogle ScholarPubMed
Thamsborg, S. M. and Hauge, E. M. (2001). Osteopenia and reduced serum alkaline phosphatase activity in grazing lambs naturally infected with gastrointestinal nematodes. Journal of Comparative Pathology 125, 192203.CrossRefGoogle ScholarPubMed
Tu, T., Koski, K. G. and Scott, M. E. (2008). Mechanisms underlying reduced expulsion of a murine nematode infection during protein deficiency. Parasitology 135, 8193.CrossRefGoogle ScholarPubMed
Tu, T., Koski, K. G., Wykes, L. J. and Scott, M. E. (2007). Re-feeding rapidly restores protection against Heligmosomoides bakeri (Nematoda) in protein-deficient mice. Parasitology 134, 899909.CrossRefGoogle ScholarPubMed
Urban, J. F. Jr., Madden, K. B., Cheever, A. W., Trotta, P. P., Katona, I. M. and Finkelman, F. D. (1993). IFN inhibits inflammatory responses and protective immunity in mice infected with the nematode parasite, Nippostrongylus brasiliensis. Journal of Immunology 151, 70867094.CrossRefGoogle ScholarPubMed
Urban, J. F., Noben-Trauth, N., Donaldson, D. D., Madden, K. B., Morris, S. C., Collins, M. and Finkelman, F. D. (1998). IL-13, IL-4Ralpha, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8, 255264.CrossRefGoogle ScholarPubMed
Ward, W. E., Piekarz, A. V. and Fonseca, D. (2007). Bone mass, bone strength, and their relationship in developing CD-1 mice. Canadian Journal of Physiology and Pharmacology 85, 274279.CrossRefGoogle ScholarPubMed
Weir, J. B. D. V. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 109, 19.CrossRefGoogle ScholarPubMed
Wong, T., Hildebrandt, M. A., Thrasher, S. M., Appleton, J. A., Ahima, R. S. and Wu, G. D. (2007). Divergent metabolic adaptations to intestinal parasitic nematode infection in mice susceptible or resistant to obesity. Gastroenterology 133, 19791988.CrossRefGoogle ScholarPubMed
Zeni, S., Di Gregorio, S. and Mautalen, C. (1999). Bone mass changes during pregnancy and lactation in the rat. Bone 256, 681685.CrossRefGoogle Scholar
Zeni, S., Weisstaub, A., Di Gregorio, S., Ronanre De Ferrer, P. and Portela, M. L. (2003). Bone mass changes in vivo during the entire reproductive cycle in rats feeding different dietary calcium and calcium/phosphorus ratio content. Calcified Tissue International 73, 594600.CrossRefGoogle ScholarPubMed