Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:41:07.077Z Has data issue: false hasContentIssue false

Complete sequence and structure of the mitochondrial genome of the human tapeworm, Taenia asiatica (Platyhelminthes; Cestoda)

Published online by Cambridge University Press:  03 February 2005

H. K. JEON
Affiliation:
Department of Parasitology and Medical Research Institute, Chungbuk National University College of Medicine, Chongju, Chungbuk 361-763, South Korea
K. H. LEE
Affiliation:
Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
K. H. KIM
Affiliation:
Department of Parasitology and Medical Research Institute, Chungbuk National University College of Medicine, Chongju, Chungbuk 361-763, South Korea
U. W. HWANG
Affiliation:
Department of Biology, Teachers College, Kyungpook National University, Taegu, South Korea
K. S. EOM
Affiliation:
Department of Parasitology and Medical Research Institute, Chungbuk National University College of Medicine, Chongju, Chungbuk 361-763, South Korea

Abstract

The complete Taenia asiatica mitochondrial genome was amplified by long extension polymerase chain reaction (long PCR) to yield overlapping fragments that were then completely sequenced. The whole mitochondrial genome was 13703 bp long and contained 12 protein-encoding, 2 ribosomal RNA (small and large subunits), 22 transfer RNA genes and a short non-coding region. Thus, its gene contents are like those typically found in metazoan animal mitochondrial genomes (apart from the absence of atp8). All the genes were transcribed from the same strand. The 3′ end 34 bp region of nad4L overlapped with the 5′ end portion of nad4. The tRNA genes were 61–69 bp long, and the secondary structures of 18 tRNAs had typical clover-leaf shapes with paired DHU arms. However, trnC, trnS1, trnS2 and trnR had unpaired DHU arms that were 7–12 bp in length. The tRNAs that transferred serine lacked a DHU arm, as is also observed in a number of parasitic platyhelminths and metazoans. However, the trematode trnRs have paired DHU arms. The T. asiatica mtDNA non-coding region was like that in other cestodes since it was composed of a short non-coding region of 72 nucleotides and a long non-coding region of 176 nucleotides separated by a trnL1/, trnS2/, trnL2/, trnR/, nad5 gene cluster. The sequences of the cox1 genes between T. asiatica and T. saginata differ by 4·6%, while the T. asiatica cob gene differs by 4·1% and 12·9% from the cob genes of T. saginata and T. solium, respectively. In conclusion, the T. asiatica mitocondrial genome should provide a resource for comparative mitochondrial genomics and systematic studies of parasitic cestodes.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BOORE, J. L. ( 1999). Animal mitochondrial genomes. Nucleic Acid Research 27, 17671780.CrossRefGoogle Scholar
BOWLES, J. & McMANUS, D. P. ( 1994). Genetic characterization of the Asian Taenia, a newly described taeniid cestode of human. American Journal of Tropical Medicine and Hygiene 50, 3344.CrossRefGoogle Scholar
CLARY, D. O. & WOLSTENHOLME, D. R. ( 1987). Drosophila mitochondrial DNA: conserved sequences in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. Journal of Molecular Evolution 25, 116125.CrossRefGoogle Scholar
DE QUEIROZ, A. & ALKIRE, N. ( 1998). The phylogenetic placement of Taenia cestodes that parasitize humans. Journal of Parasitology 84, 379383.CrossRefGoogle Scholar
EOM, K. S., JEON, H. K., KONG, Y., HWANG, U. W., YANG, Y., LI, X., XU, L., FENG, Z. & RIM, H. J. ( 2002). Identification of Taenia asiatica in China: molecular, morphological and epidemiological analysis of a Luzhai isolate. Journal of Parasitology 88, 758764.CrossRefGoogle Scholar
EOM, K. S. & RIM, H. J. ( 1992 a). Natural infection of Asian Taenia saginata metacestodes in the livers of Korean domestic pigs. Korean Journal of Parasitology 30, 1520.Google Scholar
EOM, K. S. & RIM, H. J. ( 1992 b). Experimental human infection with Asian Taenia saginata metacestodes obtained from naturally infected Korean domestic pigs. Korean Journal of Parasitology 30, 2124.Google Scholar
EOM, K. S. & RIM, H. J. ( 1993). Morphologic descriptions of Taenia asiatica sp. n. Korean Journal of Parasitology 31, 16.CrossRefGoogle Scholar
EOM, K. S., RIM, H. J. & GEERTS, S. ( 1992). Experimental infection of pigs and cattle with eggs of Asian Taenia saginata with special reference to its extrahepatic viscerotropism. Korean Journal of Parasitology 30, 269275.CrossRefGoogle Scholar
FAN, P. C. & CHUNG, W. C. ( 1998). Taenia saginata asiatica: epidemiology, infection, immunological and molecular studies. Journal of Microbiology, Immunology and Infection 31, 8489.Google Scholar
GALAN-PUCHADES, M. T. & FUENTES, M. V. ( 2000). Human cysticercosis and larval tropism of Taenia asiatica. Parasitology Today 16, 174.Google Scholar
GALAN-PUCHADES, M. T. & MAS-COMA, S. ( 1996). Considering Taenia asiatica at species level. Parasitology Today 12, 123.CrossRefGoogle Scholar
GAREY, J. R. & WOLSTENHOLME, D. R. ( 1989). Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNAserAGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. Journal of Molecular Evolution 28, 374387.CrossRefGoogle Scholar
HOBERG, E. P., JONES, A., RAUSCH, R. L., EOM, K. S. & GARDNER, S. L. ( 2000). A phylogenetic hypothesis for species of the genus Taenia (Eucestoda: Taeniidae). Journal of Parasitology 86, 8998.CrossRefGoogle Scholar
ITO, A., NAKAO, M. & WANDRA, T. ( 2003). Human taeniasis and cysticercosis in Asia. Lancet 362, 19181920.CrossRefGoogle Scholar
KEDDIE, E. M., HIGAZI, T. & UNNASCH, T. R. ( 1998). The mitochondrial genome of Onchocerca volvulus, sequence, structure and phylogenetic analysis. Molecular and Biochemical Parasitology 95, 111127.CrossRefGoogle Scholar
LE, T. G., BLAIR, D. & McMANUS, D. P. ( 2000). Mitochondrial DNA sequences of human schistosomes: the current status. International Journal for Parasitology 30, 283290.CrossRefGoogle Scholar
LE, T. G., BLAIR, D. & McMANUS, D. P. ( 2001). Complete DNA sequence and gene organization of the mitochondrial genome of the liver fluke, Fasciola hepatica. (Platyhelminthes; Trematoda). Parasitology 123, 609621.Google Scholar
LE, T. G., BLAIR, D., AGATSUMA, T., HUMAIR, P. F., CAMPBELL, N. J. H., IWAGAMI, M., LITTLEWOOD, D. T. J., PEACOCK, B., JOHNSTON, D. A., BARTLEY, J., ROLLINSON, D., HERNIOU, E. A., WARLENGA, D. S. & McMANUS, D. P. ( 2000). Phylogenies inferred from mitochondrial gene orders-a cautionary tale from the parasitic flatworms. Molecular Biology and Evolution 17, 11231125.CrossRefGoogle Scholar
LE, T. H., BLAIR, D. & McMANUS, D. P. ( 2002). Mitochondrial genomes of parasitic flatworms. Trends in Parasitology 18, 206213.CrossRefGoogle Scholar
LE, T. H., PEARSON, M. S., BLAIR, D., DAI, N., ZHANG, L. H. & McMANUS, D. P. ( 2002). Complete mitochondrial genomes confirm the distinctiveness of the horse-dog and sheep-dog strains of Echinococcus granulosus. Parasitology 124, 97112.CrossRefGoogle Scholar
LOWE, T. & EDDY, S. R. ( 1997). tRNAscan-SE: a program improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25, 955964.CrossRefGoogle Scholar
MATZURA, O. & WENNBORG, A. ( 1996). RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Computer Applications in the Biosciences (CABIOS) 12, 247249.CrossRefGoogle Scholar
NAKAO, M., SAKO, Y., YOKOYAMA, N., FUKUNAGA, M. & ITO, A. ( 2000). Mitochondrial genetic code in cestodes. Molecular and Biochemical Parasitology 11, 415424.CrossRefGoogle Scholar
OKIMOTO, R., MACFARLANE, J. L., CLARY, D. O. & WOLSTENHOLME, D. R. ( 1992). The mitochondrial genome of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130, 471498.Google Scholar
SACCONE, C., DE GIORGI, C., GISSI, C., PESOLE, G. & REYES, A. ( 1999). Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238, 195209.CrossRefGoogle Scholar
SCHANTZ, P. ( 2000). Taeniasis. In Hunter's Tropical Medicine and Emerging Infectious Disease, 8th edn ( ed. Strickland, G. T.), pp. 856859. W. B. Saunders Company, Philadelphia, USA.
THOMPSON, J. D., GIBSON, T. J., PLEWNIAK, F. & HIGGINS, D. G. ( 1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle Scholar
VON NICKISCH-ROSENEGK, M., BROWN, W. M. & BOORE, J. L. ( 2001). Complete sequence of the tapeworm Hymenolepis diminuta: gene arrangements indicate that platyhelminths are eutrochozoans. Molecular Biology and Evolution 18, 721730.CrossRefGoogle Scholar
WOLSTENHOLME, D. R. ( 1992). Animal mitochondrial DNA, structure and evolution. International Reviews of Cytology 141, 173216.CrossRefGoogle Scholar
ZARLENGA, D. S. & GEORGE, M. ( 1995). Taenia crassiceps: cloning and mapping of mitochondrial DNA and its application to the phenetic analysis of a new species of Taenia from Southeast Asia. Experimental Parasitology 81, 604607.CrossRefGoogle Scholar
ZARLENGA, D. S., McMANUS, D. P., FAN, P. C. & CROSS, J. H. ( 1991). Characterization and detection of a newly described Asian taeniid using cloned ribosomal DNA fragment and sequence amplification by polymerase chain reaction. Experimental Parasitiology 72, 174183.CrossRefGoogle Scholar