Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T12:07:02.676Z Has data issue: false hasContentIssue false

A cathepsin F of adult Clonorchis sinensis and its phylogenetic conservation in trematodes

Published online by Cambridge University Press:  01 March 2004

T. H. KANG
Affiliation:
Department of Biotechnology, Korea University Graduate School, Seoul 136-701, Korea Biomedical Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
D.-H. YUN
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon 440-746, Korea
E.-H. B. LEE
Affiliation:
Biomedical Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
Y.-B. CHUNG
Affiliation:
Department of Parasitology, College of Medicine, Cheju National University, Jeju 690-756, Korea
Y.-A. BAE
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon 440-746, Korea
J.-Y. CHUNG
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon 440-746, Korea
I. KANG
Affiliation:
Department of Biochemistry, Kyunghee University College of Medicine, Seoul 130-701, Korea
J. KIM
Affiliation:
Department of Biotechnology, Korea University Graduate School, Seoul 136-701, Korea
S.-Y. CHO
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon 440-746, Korea
Y. KONG
Affiliation:
Department of Molecular Parasitology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine and Samsung Biomedical Research Institute, Suwon 440-746, Korea

Abstract

A novel 28 kDa cysteine protease (Cs28CF) secreted by the hepatobiliary trematode, Clonorchis sinensis was identified. The protease was purified from the excretory-secretory products (ESP) of the adult worm using DEAE-ion exchange and Arginine-Sepharose 4B chromatography. It showed a high activity between pH 6·5 and 7·5 in a dithiothreitol (DTT)-dependent manner. Inhibitors specific to cysteine proteases down-regulated the activity. Addition of Cs28CF to monkey cholangiocyte cultures resulted in approximately 95% cell death after 7 days. The full-length cDNA (1078 bp) encoded a single peptide of 328 amino acids (aa) with an N-terminal hydrophobic sequence, an ERFNAQ motif in the propeptide and a mature domain. Expression of mRNA transcripts of Cs28CF was observed in both the metacercaria and adult stages. Bacterially expressed recombinant protein exhibited a specific antibody reaction with clonorchiasis sera. Deduced aa exhibited 52–76% sequence identity with the cathepsin F analogues from other organisms. A novel E/DXGTA motif was recognized in the propeptide region. Phylogenetic analysis of 63 papain family members revealed that the trematode cysteine proteases formed 2 major clades of cathepsins F and L. The trematode cysteine proteases classified as cathepsin F shared higher homology among themselves than those classified as cathepsin L. Cathepsin F is phylogenetically conserved in the trematode parasites as well as in mammals.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BARRETT, A. J. & RAWLINGS, N. D. (2001). Evolutionary lines of cysteine peptidases. Biological Chemistry 382, 727733.CrossRefGoogle Scholar
BERASAIN, P., GONI, F., McGONIGLE, S., DOWD, A., DALTON, J. P., FRANGIONE, B. & CARMONA, C. (1997). Proteinases secreted by Fasciola hepatica degrade extracellular matrix and basement membrane components. Journal of Parasitology 83, 15.Google Scholar
CARMONA, C., DOWD, A. J., SMITH, A. M. & DALTON, J. P. (1993). Cathepsin L proteinase secreted by Fasciola hepatica in vitro prevents antibody-mediated eosinophil attachment to newly excysted juveniles. Molecular and Biochemical Parasitology 62, 917.CrossRefGoogle Scholar
CHAPMAN, H. A., RIESE, R. J. & SHI, G. P. (1999). Emerging roles for cysteine proteases in human biology. Annual Review of Physiology 59, 6388.Google Scholar
CHUNG, Y. B., CHUNG, B. S., CHOI, M. H., CHAI, J. Y. & HONG, S. T. (2000). Partial characterization of a 17 kDa protein of Clonorchis sinensis. Korean Journal of Parasitology 38, 9597.CrossRefGoogle Scholar
CHUNG, Y. B., KONG, Y., JOO, I. J., CHO, S. Y. & KANG, S. Y. (1995). Excystment of Paragonimus westermani metacercariae by endogenous cysteine protease. Journal of Parasitology 81, 137142.CrossRefGoogle Scholar
CROMPTON, D. W. (1999). How much human helminthiasis is there in the world? Journal of Parasitology 85, 397403.Google Scholar
DEUSSING, J., TISLJAR, K., PAPAZOGLOU, A. & PETERS, C. (2000). Mouse cathepsin F: cDNA cloning, genomic organization and chromosomal assignment of the gene. Gene 251, 165173.CrossRefGoogle Scholar
DUFOUR, E. (1988). Sequence homologies, hydrophobic profiles and secondary structures of cathepsins B, H and L: comparison with papain and actinidin. Biochimie 70, 13351342.CrossRefGoogle Scholar
ENGEL, J. C., DOYLE, P. S., HSIEH, I. & McKERROW, J. H. (1998). Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. Journal of Experimental Medicine 188, 725734.CrossRefGoogle Scholar
GROVES, M. R., TAYLOR, M. A. J., SCOTT, M., CUMMINGS, N., PICKERSGILL, R. W. & JENKINS, J. A. (1996). The prosequence of procaricain forms an α-helical domain that prevents access to the substrate-binding cleft. Structure 4, 11931203.CrossRefGoogle Scholar
GUO, Y. L., KURZ, U., SCHULTZ, J. E., LIM, C. C., WIEDERANDERS, B. & SCHILLING, K. (2000). The 1/2 helical backbone of the prodomains defines the intrinsic inhibitory specificity in the cathepsin L-like cysteine protease subfamily. FEBS Letter 469, 203207.CrossRefGoogle Scholar
HASHMI, S., BRITTON, C., LIU, J., GUILIANO, D. B., OKSOV, Y. & LUSTIGMAN, S. (2002). Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. Journal of Biological Chemistry 277, 34773486.CrossRefGoogle Scholar
HEUSSLER, V. T. & DOBBELAERE, D. A. (1994). Cloning of a protease gene family of Fasciola hepatica by the polymerase chain reaction. Molecular and Biochemical Parasitology 64, 1123.CrossRefGoogle Scholar
HO, J. D., MELTSER, Y., BUGGY, J. J., PALMER, J. P., ELROD, K. C., CHAN, H., MORTARA, K. D. & SOMOZA, J. R. (2002). Expression, purification, crystallization and preliminary X-ray diffraction studies of human cathepsin F complexed with an irreversible vinyl sulfone inhibitor. Acta Crystallographica D58, 21872190.CrossRefGoogle Scholar
HONG, S. T., KHO, W. G. & KIM, W. H. (1993). Turnover of biliary epithelial cells in Clonorchis sinensis infected rats. Korean Journal of Parasitology 31, 8389.CrossRefGoogle Scholar
ILLY, C., QURAISHI, O., WANG, J., PURISIMA, E., VERNET, T. & MORT, J. S. (1997). Role of the occluding loop in cathepsin B activity. Journal of Biological Chemistry 272, 11971202.CrossRefGoogle Scholar
KARRER, T. M., PEIFFER, S. L. & DITOMAS, M. E. (1993). Two distinct gene subfamilies within the family of cysteine protease genes. Proceedings of National Academy of Sciences, USA 90, 30633067.CrossRefGoogle Scholar
KIM, K. H., KIM, C. D., LEE, H. S., LEE, S. J., JEEN, Y. T., CHUN, H. J., SONG, C. W., LEE, S. W., UM, S. H., CHOI, J. H., RYU, H. S. & HYUN, J. H. (1999). Biliary papillary hyperplasia with clonorchiasis resembling cholangiocarcinoma. American Journal of Gastroenterology 94, 514517.CrossRefGoogle Scholar
KONG, Y., CHUNG, Y. B., CHO, S. Y. & KANG, S. Y. (1994). Cleavage of immunoglobulin G by excretory-secretory cathepsin S-like protease of Spirometra mansoni plerocercoid. Parasitology 109, 611621.CrossRefGoogle Scholar
KONG, Y., KANG, S. Y., KIM, S. H., CHUNG, Y. B. & CHO, S. Y. (1997). A neutral cysteine protease of Spirometra mansoni plerocercoid invoking an IgE response. Parasitology 114, 263271.CrossRefGoogle Scholar
LEE, J. H., RIM, H. J. & SELL, S. (1997). Heterogeneity of the “oval-cell” response in the hamster liver during cholangiocarcinogenesis following Clonorchis sinensis infection and dimethylnitrosamine treatment. Journal of Hepatology 26, 13131323.CrossRefGoogle Scholar
LEWIS, S. D., JOHNSON, F. A. & SHAFER, J. A. (1981). Effect of cysteine-25 on the ionization of histidine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a His-159-Cys-25 ion pair and its possible role in catalysis. Biochemistry 6, 4851.Google Scholar
LUSTIGMAN, S., McKERROW, J. H., SHAH, K., LUI, J., HUIMA, T., HOUGH, M. & BROTMAN, B. (1996). Cloning of a cysteine protease required for the molting of Onchocerca volvulus third stage larvae. Journal of Biological Chemistry 271, 3018130189.CrossRefGoogle Scholar
McKERROW, J. H., ENGEL, J. C. & CAFFREY, C. R. (1999). Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorganic and Medicinal Chemistry 7, 639644.CrossRefGoogle Scholar
NA, B. K., LEE, H. J., CHO, S. H., LEE, H. W., CHO, J. H., KHO, W. G., LEE, J. S., LEE, J. S., SONG, K. J., PARK, P. H., SONG, C. Y. & KIM, T. S. (2002). Expression of cysteine proteinase of Clonorchis sinensis and its use in serodiagnosis of clonorchiasis. Journal of Parasitology 88, 10001006.CrossRefGoogle Scholar
NAGLER, D. K., SULEA, T. & MENARD, R. (1999). Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Biochemical and Biophysical Research Communication 257, 313318.CrossRefGoogle Scholar
NICHOLAS, K. B. & NICHOLAS, H. B. jr. (1997). GenDoc: a tool for editing and annotation of multiple sequence alignment. Distributed by authors (www.cris.com/~ketchup/genedoc.shtmi).
PAGE, R. D. (1996). Tree view: an application to display phylogenetic trees on personal computers. Computerized Applied Biosciences 12, 357358.CrossRefGoogle Scholar
PARK, S. Y., LEE, K. H., HWANG, Y. B., KIM, K. Y., PARK, S. K., HWANG, H. A., SAKANARI, J. A., HONG, K. M., KIM, S. I. & PARK, H. (2001). Characterization and large-scale expression of the recombinant cysteine proteinase from adult Clonorchis sinensis. Journal of Parasitology 87, 14541458.CrossRefGoogle Scholar
RIM, H. J. (1987). The current pathobiology and chemotherapy of clonorchiasis. Korean Journal of Parasitology 24 (Suppl.), 1141.Google Scholar
SAJID, M. & McKERROW, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121.CrossRefGoogle Scholar
SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
SANTAMARIA, I., VELASCO, G., PENDAS, A. M., PAZ, A. & LOPEZ-OTIN, C. (1999). Molecular cloning and structural and functional characterization of human cathepsin F, a new cysteine proteinase of the papain family with a long propeptide domain. Journal of Biological Chemistry 274, 1380013809.CrossRefGoogle Scholar
SONG, C. Y., DRESDEN, M. H. & REGE, A. A. (1990). Clonorchis sinensis: Purification and characterization of a cysteine proteinase from adult worms. Comparative Biochemistry and Physiology (B) 97, 825829.CrossRefGoogle Scholar
SONG, C. Y. & REGE, A. A. (1991). Cysteine proteinase activity in various developmental stages of Clonorchis sinensis: a comparative analysis. Comparative Biochemistry and Physiology (B) 99, 137140.CrossRefGoogle Scholar
THOMPSON, J. D., HIGGINS, D. G. & GIBSON, T. J. (1994). CULSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Research 22, 48734880.Google Scholar
YUN, D. H., CHUNG, J. Y., CHUNG, Y. B., BAHK, Y. Y., KANG, S. Y., KONG, Y. & CHO, S. Y. (2000). Structural and immunological characteristics of a 28-kilodalton cruzipain-like cysteine protease of Paragonimus westermani expressed in the definitive host stage. Clinical and Diagnostic Laboratory Immunology 7, 932939.CrossRefGoogle Scholar
WANG, B., SHI, G. P., YAO, P. M., LI, Z., CHAPMAN, H. A. & BROMME, D. (1998). Human cathepsin F. Molecular cloning, functional expression, tissue localization, and enzymatic characterization. Journal of Biological Chemistry 273, 3200032008.CrossRefGoogle Scholar
WEX, T., WEX, H. & BROMME, D. (1999). The human cathepsin F gene-a fusion product between an ancestral cathepsin and cystatin gene. Biological Chemistry 380, 14391442.CrossRefGoogle Scholar
WILSON, L. R., GOOD, R. T., PANACCIO, M., WIJFFELS, G. L., SANDEMAN, R. M. & SPITHLL, T. W. (1998). Fasciola hepatica: Characterization and cloning of the major cathepsin B protease secreted by newly excysted juvenile liver fluke. Experimental Parasitology 88, 8594.CrossRefGoogle Scholar