Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T01:43:12.401Z Has data issue: false hasContentIssue false

Cardiac and oxidative stress biomarkers in Trypanosoma evansi infected camels: diagnostic and prognostic prominence

Published online by Cambridge University Press:  12 January 2015

W. M. EL-DEEB*
Affiliation:
Department of Clinical studies, College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia Department of Veterinary Medicine, Infectious diseases and fish diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
A. M. ELMOSLEMANY
Affiliation:
Department of Clinical studies, College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia Hygiene and Preventive Medicine Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh 35516, Egypt
*
* Corresponding author. Department of Clinical studies, College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia. E-mail: weldeeb@kfu.edu.sa, drwaeleldeeb@yahoo.com

Summary

This study was conducted to investigate the level of cardiac and oxidative stress markers in camels infected with Trypanosoma evansi and to explore the diagnostic and prognostic value of cardiac troponin I (cTnI) and creatine kinase-myocardial band (CK-MB) in response to infection. Seventy four dromedary camels with clinical and laboratory evidence of trypanosomosis and 20 healthy controls were included in this study. Serum cTnI, CK-MB, CK, malondialdehyde (MDA) and super oxide dismutase (SOD) were measured. The values of cTnI, CK-MB, CK and MDA were significantly higher, whereas SOD level was lower in T. evansi infected camel. Successfully treated camels (n = 43) had lower levels of cTnI, CK-MB, CK and MDA, but higher level of SOD compared to camels with treatment failure. Both cTnI and CK-MB showed high degree of accuracy in predicting treatment outcome (success vs failure). The area under the curve for cTnI and CK-MB was 0·98 and 0·93, respectively. However, cTnI showed better sensitivity and specificity than CK-MB (Se = 96·8% vs 83·9% and Sp = 100% vs 88·5%, respectively). These results suggest that cTnI and CK-MB could be used as diagnostic and prognostic biomarkers in camels infected with T. evansi.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anosa, V. (1988). Haematological and biochemical changes in human and animal trypanosomosis. I. Revue d’élevage et de médecine vétérinaire des pays tropicaux 41, 6578.CrossRefGoogle ScholarPubMed
Ansley, D. M. and Wang, B. (2013). Oxidative stress and myocardial injury in the diabetic heart. The Journal of Pathology 229, 232241.CrossRefGoogle ScholarPubMed
Coles, E. H. (1980). Veterinary Clinical Pathology, 3rd Edn. WB Saunders, Philadelphia, USA.Google Scholar
DeLong, E. R., DeLong, D. M. and Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837845.CrossRefGoogle ScholarPubMed
Fartashvand, M., Nadalian, M., Sakha, M. and Safi, S. (2013). Elevated serum cardiac troponin I in cattle with theileriosis. Journal of Veterinary Internal Medicine 27, 194199.CrossRefGoogle ScholarPubMed
Fonfara, S., Loureiro, J., Swift, S., James, R., Cripps, P. and Dukes-McEwan, J. (2010). Cardiac troponin I as a marker for severity and prognosis of cardiac disease in dogs. The Veterinary Journal 184, 334339.CrossRefGoogle ScholarPubMed
Grieve, D. J. and Shah, A. M. (2003). Oxidative stress in heart failure. More than just damage. European Heart Journal 24, 21612163.CrossRefGoogle ScholarPubMed
Gutierrez, C., Corbera, J., Juste, M., Doreste, F. and Morales, I. (2005). An outbreak of abortions and high neonatal mortality associated with Trypanosoma evansi infection in dromedary camels in the Canary Islands. Veterinary Parasitology 130, 163168.CrossRefGoogle ScholarPubMed
Igbokwe, I., Esievo, K., Saror, D. and Obagaiye, O. (1994). Increased susceptibility of erythrocytes to in vitro peroxidation in acute Trypanosoma brucei infection of mice. Veterinary Parasitology 55, 279286.CrossRefGoogle ScholarPubMed
Lobetti, R., Kirberger, R., Keller, N., Kettner, F. and Dvir, E. (2012). NT-ProBNP and cardiac troponin I in virulent canine babesiosis. Veterinary Parasitology 190, 333339.CrossRefGoogle ScholarPubMed
Luckins, A. and Dwinger, R. (2004). Non-tsetse-transmitted animal trypanosomosis. In The Trypanosomiases (ed. Maudlin, I., Holmes, P. and Miles, M.), pp. 269282. CABI Publishing, Oxfordshire, UK.CrossRefGoogle Scholar
McLean, A. S. and Huang, S. J. (2012). Cardiac biomarkers in the intensive care unit. Ann Intensive Care 2, 111.CrossRefGoogle ScholarPubMed
Misra, H. P. and Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry 247, 31703175.CrossRefGoogle Scholar
Njiru, Z., Brett, B., Ole-Mapeny, I., Githiori, J. and Ndung'u, J. (2002). Trypanosomosis and helminthosis in camels: comparison of ranch and traditional camel management systems in Kenya. Journal of Camel Practice and Research 9, 6771.Google Scholar
O'Brien, P. J., Smith, D. E., Knechtel, T. J., Marchak, M. A., Pruimboom-Brees, I., Brees, D. J., Spratt, D. P., Archer, F. J., Butler, P., Potter, A. N., Provost, J. P., Richard, J., Snyder, P. A. and Reagan, W. J. (2006). Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animals 40, 153171.CrossRefGoogle ScholarPubMed
OIE (2012). Manual of diagnostic tests and vaccines for terrestrial animals. In OIE Terrestrial Manual, pp. 117.Google Scholar
Olaho-Mukani, W., Nyang'ao, J. and Ouma, J. (1996). Use of suratex for field diagnosis of patent and non-patent Trypanosoma evansi infections in camels. British Veterinary Journal 152, 109111.CrossRefGoogle ScholarPubMed
Omer, O., Mousa, H. and Al-Wabel, N. (2007). Study on the antioxidant status of rats experimentally infected with Trypanosoma evansi . Veterinary Parasitology 145, 142145.CrossRefGoogle Scholar
Pacholek, X., Gamatie, D., Franck, S. V. and Tibayrenc, R. (2000). Prevalence of Trypanosoma evansi trypanosomosis in young camels in West Niger, Revue d'élevage et de médecine vétérinaire des pays tropicaux 53, 177182.CrossRefGoogle Scholar
Placer, Z. A., Cushman, L. L. and Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry 16, 359364.CrossRefGoogle ScholarPubMed
Rahman, I., Biswas, S. K. and Kode, A. (2006). Oxidant and antioxidant balance in the airways and airway diseases. European Journal of Pharmacology 533, 222239.CrossRefGoogle ScholarPubMed
Reagan, W. J., York, M., Berridge, B., Schultze, E., Walker, D. and Pettit, S. (2013). Comparison of cardiac troponin I and T, including the evaluation of an ultrasensitive assay, as indicators of doxorubicin-induced cardiotoxicity. Toxicologic Pathology 41, 11461158.CrossRefGoogle Scholar
Saleh, M. A., Al-Salahy, M. B. and Sanousi, S. A. (2009). Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi . Veterinary Parasitology 162, 192199.CrossRefGoogle ScholarPubMed
Silvestrini, P., Piviani, M., Alberola, J., Rodríguez-Cortés, A., Planellas, M., Roura, X., O'Brien, P. J. and Pastor, J. (2012). Serum cardiac troponin I concentrations in dogs with leishmaniosis: correlation with age and clinicopathologic abnormalities. Veterinary Clinical Pathology 41, 568574.CrossRefGoogle ScholarPubMed
Tharwat, M. and Al-Sobayil, F. (2014). The effect of tick infection on the serum concentrations of the cardiac biomarker troponin I, acid–base balance and haematobiochemical profiles in camels (Camelus dromedarius). Tropical Animal Health and Production 46, 139144.CrossRefGoogle ScholarPubMed
Tharwat, M., Al-Sobayil, F. and Buczinski, S. (2013). Cardiac biomarker changes in camels (Camelus dromedarius) secondary to road transportation. Journal of Veterinary Cardiology 15, 1522.CrossRefGoogle ScholarPubMed
Wang, A. Y., Lam, C. W., Wang, M., Chan, I. H., Lui, S. F., Zhang, Y. and Sanderson, J. E. (2009). Diagnostic potential of serum biomarkers for left ventricular abnormalities in chronic peritoneal dialysis patients. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association – European Renal Association 24, 19621969.CrossRefGoogle ScholarPubMed
Wells, S. M. and Sleeper, M. (2008). Cardiac troponins. Journal of Veterinary Emergency and Critical Care 18, 235245.CrossRefGoogle Scholar
Wen, J., Vyatkina, G. and Garg, N. (2004). Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radical Biology and Medicine 37, 18211833.CrossRefGoogle ScholarPubMed
Yousef, M., Saad, A. and El-Shennawy, L. (2009). Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food and Chemical Toxicology 47, 11761183.CrossRefGoogle ScholarPubMed