Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T23:44:35.996Z Has data issue: false hasContentIssue false

BRF1, a subunit of RNA polymerase III transcription factor TFIIIB, is essential for cell growth of Trypanosoma brucei

Published online by Cambridge University Press:  04 September 2015

D. E. VÉLEZ-RAMÍREZ
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
L. E. FLORENCIO-MARTÍNEZ
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
G. ROMERO-MEZA
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, México, D.F., CP 07360, México
S. ROJAS-SÁNCHEZ
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
R. MORENO-CAMPOS
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
R. ARROYO
Affiliation:
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, México, D.F., CP 07360, México
J. ORTEGA-LÓPEZ
Affiliation:
Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, México, D.F., CP 07360, México
R. MANNING-CELA
Affiliation:
Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, México, D.F., CP 07360, México
S. MARTÍNEZ-CALVILLO*
Affiliation:
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
*
*Corresponding author. Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México. E-mail: scalv@campus.iztacala.unam.mx

Summary

RNA polymerase III (Pol III) synthesizes small RNA molecules that are essential for cell viability. Accurate initiation of transcription by Pol III requires general transcription factor TFIIIB, which is composed of three subunits: TFIIB-related factor BRF1, TATA-binding protein and BDP1. Here we report the molecular characterization of BRF1 in Trypanosoma brucei (TbBRF1), a parasitic protozoa that shows distinctive transcription characteristics. In silico analysis allowed the detection in TbBRF1 of the three conserved domains located in the N-terminal region of all BRF1 orthologues, namely a zinc ribbon motif and two cyclin repeats. Homology modelling suggested that, similarly to other BRF1 and TFIIB proteins, the TbBRF1 cyclin repeats show the characteristic structure of five α-helices per repeat, connected by a short random-coiled linker. As expected for a transcription factor, TbBRF1 was localized in the nucleus. Knock-down of TbBRF1 by RNA interference (RNAi) showed that this protein is essential for the viability of procyclic forms of T. brucei, since ablation of TbBRF1 led to growth arrest of the parasites. Nuclear run-on and quantitative real-time PCR analyses demonstrated that transcription of all the Pol III-dependent genes analysed was reduced, at different levels, after RNAi induction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acker, J., Conesa, C. and Lefebvre, O. (2013). Yeast RNA polymerase III transcription factors and effectors. Biochimica et Biophysica Acta 1829, 283295.CrossRefGoogle ScholarPubMed
Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D. C., Lennard, N. J., Caler, E., Hamlin, N. E., Haas, B., Bohme, U., Hannick, L., Aslett, M. A., Shallom, J., Marcello, L., Hou, L., Wickstead, B., Alsmark, U. C., Arrowsmith, C., Atkin, R. J., Barron, A. J., Bringaud, F., Brooks, K., Carrington, M., Cherevach, I., Chillingworth, T. J., Churcher, C., Clark, L. N., Corton, C. H., Cronin, A. et al. (2005). The genome of the African trypanosome Trypanosoma brucei . Science 309, 416422.Google Scholar
Buratowski, S. and Zhou, H. (1993). Functional domains of transcription factor TFIIB. Proceedings of the National Academy of Sciences of the United States of America 90, 56335637.Google Scholar
Chen, H. T., Legault, P., Glushka, J., Omichinski, J. G. and Scott, R. A. (2000). Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Science 9, 17431752.Google Scholar
Colbert, T. and Hahn, S. (1992). A yeast TFIIB-related factor involved in RNA polymerase III transcription. Genes & Development 6, 19401949.CrossRefGoogle ScholarPubMed
Conesa, C., Ruotolo, R., Soularue, P., Simms, T. A., Donze, D., Sentenac, A. and Dieci, G. (2005). Modulation of yeast genome expression in response to defective RNA polymerase III-dependent transcription. Molecular and Cellular Biology 25, 86318642.Google Scholar
Das, A., Zhang, Q., Palenchar, J. B., Chatterjee, B., Cross, G. A. and Bellofatto, V. (2005). Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. Molecular and Cellular Biology 25, 73147322.Google Scholar
Das, A., Banday, M. and Bellofatto, V. (2008). RNA polymerase transcription machinery in trypanosomes. Eukaryotic Cell 7, 429434.Google Scholar
Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M. and Pagano, A. (2007). The expanding RNA polymerase III transcriptome. Trends in Genetics 23, 614622.Google Scholar
Dieci, G., Bosio, M. C., Fermi, B. and Ferrari, R. (2013). Transcription reinitiation by RNA polymerase III. Biochimica et Biophysica Acta 1829, 331341.Google Scholar
Fantoni, A., Dare, A. O. and Tschudi, C. (1994). RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements. Molecular and Cellular Biology 14, 20212028.Google Scholar
Felton-Edkins, Z. A., Fairley, J. A., Graham, E. L., Johnston, I. M., White, R. J. and Scott, P. H. (2003). The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO Journal 22, 24222432.Google Scholar
Foldynova-Trantirkova, S., Paris, Z., Sturm, N. R., Campbell, D. A. and Lukes, J. (2005). The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal. International Journal for Parasitology 35, 359366.Google Scholar
Gilinger, G. and Bellofatto, V. (2001). Trypanosome spliced leader RNA genes contain the first identified RNA polymerase II gene promoter in these organisms. Nucleic Acids Research 29, 15561564.Google Scholar
Goodfellow, S. J. and White, R. J. (2007). Regulation of RNA polymerase III transcription during mammalian cell growth. Cell Cycle 6, 23232326.Google Scholar
Gunzl, A., Bruderer, T., Laufer, G., Schimanski, B., Tu, L. C., Chung, H. M., Lee, P. T. and Lee, M. G. (2003). RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei . Eukaryotic Cell 2, 542551.CrossRefGoogle ScholarPubMed
Gunzl, A., Vanhamme, L. and Myler, P. J. (2007). Transcription in trypanosomes: a different means to the end. In Trypanosomes: After the Genome (ed. Barry, J. D., McCulloch, R., Mottram, J. C. and Acosta-Serrano, A.), pp. 177208. Horizon Bioscience, Wymonham, UK.Google Scholar
Haeusler, R. A. and Engelke, D. R. (2006). Spatial organization of transcription by RNA polymerase III. Nucleic Acids Research 34, 48264836.Google Scholar
Hahn, S. and Roberts, S. (2000). The zinc ribbon domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcription initiation. Genes & Development 14, 719730.Google Scholar
Ibrahim, B. S., Kanneganti, N., Rieckhof, G. E., Das, A., Laurents, D. V., Palenchar, J. B., Bellofatto, V. and Wah, D. A. (2009). Structure of the C-terminal domain of transcription factor IIB from Trypanosoma brucei . Proceedings of the National Academy of Sciences of the United States of America 106, 1324213247.Google Scholar
Kassavetis, G. A. and Geiduschek, E. P. (2006). Transcription factor TFIIIB and transcription by RNA polymerase III. Biochemical Society Transactions 34, 10821087.Google Scholar
Kassavetis, G. A., Bartholomew, B., Blanco, J. A., Johnson, T. E. and Geiduschek, E. P. (1991). Two essential components of the Saccharomyces cerevisiae transcription factor TFIIIB: transcription and DNA-binding properties. Proceedings of the National Academy of Sciences of the United States of America 88, 73087312.Google Scholar
Kennedy, P. G. (2013). Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurology 12, 186194.Google Scholar
Khoo, S. K., Wu, C. C., Lin, Y. C., Lee, J. C. and Chen, H. T. (2014). Mapping the protein interaction network for TFIIB-related factor Brf1 in the RNA polymerase III preinitiation complex. Molecular and Cellular Biology 34, 551559.Google Scholar
Lecordier, L., Devaux, S., Uzureau, P., Dierick, J. F., Walgraffe, D., Poelvoorde, P., Pays, E. and Vanhamme, L. (2007). Characterization of a TFIIH homologue from Trypanosoma brucei . Molecular Microbiology 64, 11641181.Google Scholar
Lee, J. H., Nguyen, T. N., Schimanski, B. and Gunzl, A. (2007). Spliced leader RNA gene transcription in Trypanosoma brucei requires transcription factor TFIIH. Eukaryotic Cell 6, 641649.Google Scholar
Lee, J. H., Cai, G., Panigrahi, A. K., Dunham-Ems, S., Nguyen, T. N., Radolf, J. D., Asturias, F. J. and Gunzl, A. (2010). A TFIIH-associated mediator head is a basal factor of small nuclear spliced leader RNA gene transcription in early-diverged trypanosomes. Molecular and Cellular Biology 30, 55025513.CrossRefGoogle ScholarPubMed
Lopez-de-Leon, A., Librizzi, M., Puglia, K. and Willis, I. M. (1992). PCF4 encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71, 211220.Google Scholar
Marchetti, M. A., Tschudi, C., Kwon, H., Wolin, S. L. and Ullu, E. (2000). Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. Journal of Cell Science 113 (Pt 5), 899906.Google Scholar
Martinez-Calvillo, S., Yan, S., Nguyen, D., Fox, M., Stuart, K. and Myler, P. J. (2003). Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. Molecular Cell 11, 12911299.Google Scholar
Martinez-Calvillo, S., Vizuet-de-Rueda, J. C., Florencio-Martinez, L. E., Manning-Cela, R. G. and Figueroa-Angulo, E. E. (2010). Gene expression in trypanosomatid parasites. Journal of Biomedicine and Biotechnology 2010, 525241.Google Scholar
Michaeli, S. (2011). Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiology 6, 459474.Google Scholar
Moir, R. D. and Willis, I. M. (2013). Regulation of pol III transcription by nutrient and stress signaling pathways. Biochimica et Biophysica Acta 1829, 361375.Google Scholar
Moir, R. D., Puglia, K. V. and Willis, I. M. (2002). A gain-of-function mutation in the second tetratricopeptide repeat of TFIIIC131 relieves autoinhibition of Brf1 binding. Molecular and Cellular Biology 22, 61316141.Google Scholar
Nakaar, V., Gunzl, A., Ullu, E. and Tschudi, C. (1997). Structure of the Trypanosoma brucei U6 snRNA gene promoter. Molecular and Biochemical Parasitology 88, 1323.Google Scholar
Nguyen, T. N., Schimanski, B. and Gunzl, A. (2007). Active RNA polymerase I of Trypanosoma brucei harbors a novel subunit essential for transcription. Molecular and Cellular Biology 27, 62546263.Google Scholar
Noble, M. E., Endicott, J. A., Brown, N. R. and Johnson, L. N. (1997). The cyclin box fold: protein recognition in cell-cycle and transcription control. Trends in Biochemical Sciences 22, 482487.Google Scholar
Padilla-Mejia, N. E., Florencio-Martinez, L. E., Moreno-Campos, R., Vizuet-de-Rueda, J. C., Cevallos, A. M., Hernandez-Rivas, R., Manning-Cela, R. and Martinez-Calvillo, S. (2015). The Selenocysteine tRNA gene in Leishmania major is transcribed by both RNA Polymerase II and RNA polymerase III. Eukaryotic Cell 14, 216227.Google Scholar
Palenchar, J. B., Liu, W., Palenchar, P. M. and Bellofatto, V. (2006). A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent spliced leader RNA transcription and cell viability. Eukaryotic Cell 5, 293300.Google Scholar
Ruan, J. P., Arhin, G. K., Ullu, E. and Tschudi, C. (2004). Functional characterization of a Trypanosoma brucei TATA-binding protein-related factor points to a universal regulator of transcription in trypanosomes. Molecular and Cellular Biology 24, 96109618.Google Scholar
Schimanski, B., Nguyen, T. N. and Gunzl, A. (2005 a). Characterization of a multisubunit transcription factor complex essential for spliced-leader RNA gene transcription in Trypanosoma brucei . Molecular and Cellular Biology 25, 73037313.Google Scholar
Schimanski, B., Nguyen, T. N. and Gunzl, A. (2005 b). Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryotic Cell 4, 19421950.Google Scholar
Schimanski, B., Brandenburg, J., Nguyen, T. N., Caimano, M. J. and Gunzl, A. (2006). A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in Trypanosoma brucei . Nucleic Acids Research 34, 16761684.Google Scholar
Schramm, L. and Hernandez, N. (2002). Recruitment of RNA polymerase III to its target promoters. Genes & Development 16, 25932620.Google Scholar
Schramm, L., Pendergrast, P. S., Sun, Y. and Hernandez, N. (2000). Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. Genes & Development 14, 26502663.Google Scholar
White, R. J. (2011). Transcription by RNA polymerase III: more complex than we thought. Nature Reviews Genetics 12, 459463.Google Scholar
Wickstead, B., Ersfeld, K. and Gull, K. (2002). Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei . Molecular and Biochemical Parasitology 125, 211216.Google Scholar
Willis, I. M. (1993). RNA polymerase III. Genes, factors and transcriptional specificity. European Journal of Biochemistry 212, 111.Google Scholar
Wirtz, E., Leal, S., Ochatt, C. and Cross, G. A. (1999). A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei . Molecular & Biochemical Parasitology 99, 89101.Google Scholar