Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T20:42:18.576Z Has data issue: false hasContentIssue false

Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro

Published online by Cambridge University Press:  13 October 2004

G. STEPEK
Affiliation:
School of Biology, University Park, University of Nottingham, Nottingham NG7 2RD, UK
D. J. BUTTLE
Affiliation:
Division of Genomic Medicine, University of Sheffield, Sheffield S10 2TH, UK
I. R. DUCE
Affiliation:
School of Biology, University Park, University of Nottingham, Nottingham NG7 2RD, UK
A. LOWE
Affiliation:
School of Biology, University Park, University of Nottingham, Nottingham NG7 2RD, UK
J. M. BEHNKE
Affiliation:
School of Biology, University Park, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

We examined the mechanism of action and compared the anthelmintic efficacy of cysteine proteinases from papaya, pineapple, fig, kiwi fruit and Egyptian milkweed in vitro using the rodent gastrointestinal nematode Heligmosomoides polygyrus. Within a 2 h incubation period, all the cysteine proteinases, with the exception of the kiwi fruit extract, caused marked damage to the cuticle of H. polygyrus adult male and female worms, reflected in the loss of surface cuticular layers. Efficacy was comparable for both sexes of worms, was dependent on the presence of cysteine and was completely inhibited by the cysteine proteinase inhibitor, E-64. LD50 values indicated that the purified proteinases were more efficacious than the proteinases in the crude latex, with purified ficin, papain, chymopapain, Egyptian milkweed latex extract and pineapple fruit extract, containing fruit bromelain, having the most potent effect. The mechanism of action of these plant enzymes (i.e. an attack on the protective cuticle of the worm) suggests that resistance would be slow to develop in the field. The efficacy and mode of action make plant cysteine proteinases potential candidates for a novel class of anthelmintics urgently required for the treatment of humans and domestic livestock.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BAKER, E. N. & DRENTH, J. ( 1987). The thiol proteases: structure and mechanism. In Biological Macromolecules and Assemblies: Vol. 3 – Active Sites of Enzymes (ed. Jurnak, F. A. & McPherson, A.), pp. 313368. John Wiley and Sons, New York.
BERGER, J. & ASENJO, C. F. ( 1939). Anthelmintic activity of fresh pineapple juice. Science 90, 299300.CrossRefGoogle Scholar
BERGER, J. & ASENJO, C. F. ( 1940). Anthelmintic activity of crystalline papain. Science 91, 387388.CrossRefGoogle Scholar
COLES, G. C. ( 1995). Chemotherapy of human nematodes: learning from the problems in sheep. Journal of the Royal Society of Medicine 88, 649P651P.Google Scholar
COLES, G. C. ( 1998). Drug-resistant parasites of sheep: an emerging problem in Britain? Parasitology Today 14, 8688.Google Scholar
COX, J. ( 1999). The nature conservation importance of dung. British Wildlife 11, 2836.Google Scholar
DALTON, J. P. & MULCAHY, G. ( 2001). Parasite vaccines – a reality? Veterinary Parasitology 98, 149167.Google Scholar
DE CLERCQ, D., SACKO, M., BEHNKE, J., GILBERT, F., DORNY, P. & VERCRUYSSE, J. ( 1997). Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. American Journal of Tropical Medicine and Hygiene 57, 2530.CrossRefGoogle Scholar
DURETTE-DESSET, M. C. ( 1971). Essai de classification des nématodes Héligmosomes. Corrélations avec la paléobiogéographie des hôtes. Mémoires du Muséum National d'Histoire Naturelle (Série A. Zoologie) 69, 1126 (in French).Google Scholar
GILL, J. H. & LACEY, E. ( 1998). Avermectin/milbemycin resistance in trichostrongyloid nematodes. International Journal for Parasitology 28, 863877.CrossRefGoogle Scholar
HANSSON, A., VELIZ, G., NAQUIRA, C., AMREN, M., ARROYO, M. & AREVALO, G. ( 1986). Preclinical and clinical studies with latex from Ficus glabrata HBK, a traditional intestinal anthelmintic in the Amazonian area. Journal of Ethnopharmacology 17, 105138.CrossRefGoogle Scholar
JACKSON, F. & COOP, R. L. ( 2000). The development of anthelmintic resistance in sheep nematodes. Parasitology 120 (Suppl.), S95S107.CrossRefGoogle Scholar
KNOX, D. P. ( 2000). Development of vaccines against gastrointestinal nematodes. Parasitology 120 (Suppl.), S43S61.CrossRefGoogle Scholar
KRAMER, D. E. & WHITAKER, J. R. ( 1964). Ficus enzymes II: Properties of the proteolytic enzymes from the latex of Ficus carica variety Kadota. Journal of Biological Chemistry 239, 21782183.Google Scholar
LUSTIGMAN, S., BROTMAN, B., HUIMA, T., PRINCE, A. M. & McKERROW, J. H. ( 1992). Molecular cloning and characterisation of onchocystatin, a cysteine proteinase inhibitor of Onchocerca volvulus. Journal of Biological Chemistry 267, 1733917346.Google Scholar
NEWLANDS, G. F. J., SKUCE, P. J., KNOX, D. P. & SMITH, W. D. ( 2001). Cloning and expression of cystatin, a potent cysteine protease inhibitor from the gut of Haemonchus contortus. Parasitology 122, 371378.CrossRefGoogle Scholar
MAIZELS, R. M., BLAXTER, M. L. & SELKIRK, M. E. ( 1993). Forms and functions of nematode surfaces. Experimental Parasitology 77, 380384.CrossRefGoogle Scholar
MARTIN, R. J. & ROBERTSON, A. P. ( 2000). Electrophysiological investigation of anthelmintic resistance. Parasitology 120 (Suppl.), S87S94.CrossRefGoogle Scholar
PEANASKY, R. J. & ABU-ERREISH, G. ( 1970). Inhibitors from Ascaris lumbricoides: interactions with the host's digestive enzymes. Proceedings of the International Conference of Proteinase Inhibitors, Munich, pp. 281293. Walter de Gruyter, Berlin/New York.
REYNOLDSON, J. A., BEHNKE, J. M., PALLANT, L. J., MacNISH, M. G., GILBERT, F., GILES, S., SPARGO, R. J. & THOMPSON, R. C. A. ( 1997). Failure of pyrantel in treatment of human hookworm infections (Ancylostoma duodenale) in the Kimberley region of North West Australia. Acta Tropica 68, 301312.CrossRefGoogle Scholar
ROBBINS, B. H. ( 1930). A proteolytic enzyme in ficin, the anthelmintic principle of Leche de Higueron. Journal of Biological Chemistry 87, 251257.Google Scholar
ROWAN, A. D., BUTTLE, D. J. & BARRETT, A. J. ( 1990). The cysteine proteinases of the pineapple plant. The Biochemical Journal 266, 869875.Google Scholar
SATRIJA, F., NANSEN, P., BJORN, H., MURTINI, S. & HE, S. ( 1994). Effect of papaya latex against Ascaris suum in naturally infected pigs. Journal of Helminthology 68, 343346.CrossRefGoogle Scholar
SATRIJA, F., NANSEN, P., MURTINI, S. & HE, S. ( 1995). Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. Journal of Ethnopharmacology 48, 161164.CrossRefGoogle Scholar
SUGIYAMA, S., OHTSUKI, K., SATO, K. & KAWABATA, M. ( 1997). Enzymatic properties, substrate specificities and pH-activity profiles of two kiwi fruit proteases. Journal of Nutritional Science and Vitaminology 43, 581589.CrossRefGoogle Scholar
VARAGHESE, K. I., AHMED, F. R., CAREY, P. R., HASNAIN, S., HUBER, C. P. & STORER, A. C. ( 1989). Crystal structure of a papain-E-64 complex. Biochemistry 28, 13301332.CrossRefGoogle Scholar
WALLER, P. J. ( 1986). Anthelmintic resistance in nematode parasites of sheep. Agricultural Zoology Reviews 1, 333373.Google Scholar
WANG, C.-I., YANG, Q. & CRAIK, C. S. ( 1995). Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin. Journal of Biological Chemistry 270, 1225012256.CrossRefGoogle Scholar
ZANG, X. & MAIZELS, R. M. ( 2001). Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends in Biochemical Sciences 26, 191197.CrossRefGoogle Scholar
ZUCKER, S., BUTTLE, D. J., NICKLIN, M. J. H. & BARRETT, A. J. ( 1985). The proteolytic activities of chymopapain, papain, and papaya proteinase III. Biochimica et Biophysica Acta 828, 196204.CrossRefGoogle Scholar