Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:51:33.435Z Has data issue: false hasContentIssue false

Anti-VSG antibodies induce an increase in Trypanosoma evansi intracellular Ca2+ concentration

Published online by Cambridge University Press:  28 August 2008

M. MENDOZA*
Affiliation:
Centro de Estudios Biomédicos y Veterinarios, Universidad Nacional Experimental Simón Rodríguez, Caracas, Venezuela Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
G. L. UZCANGA*
Affiliation:
Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela Centro de Biociencias y Medicina Molecular, Fundación Instituto de Estudios Avanzados – IDEA, Caracas, Venezuela
R. PACHECO
Affiliation:
Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela Departamento de Biología, Facultad Experimental de Ciencias y Tecnología, Universidad de Carabobo, Valencia, Venezuela
H. ROJAS
Affiliation:
Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
L. M. CARRASQUEL
Affiliation:
Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
Y. GARCÍA-MARCHAN
Affiliation:
Centro de Biociencias y Medicina Molecular, Fundación Instituto de Estudios Avanzados – IDEA, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
X. SERRANO-MARTÍN
Affiliation:
Centro de Biociencias y Medicina Molecular, Fundación Instituto de Estudios Avanzados – IDEA, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
G. BENAÍM
Affiliation:
Centro de Biociencias y Medicina Molecular, Fundación Instituto de Estudios Avanzados – IDEA, Caracas, Venezuela Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
J. BUBIS
Affiliation:
Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
A. MIJARES
Affiliation:
Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
*
*Corresponding authors: M. Mendoza, Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos, Universidad Nacional Experimental Simón Rodríguez, Apartado Postal 47925, Caracas, Venezuela. Tel: +58 212 5041853. Fax: +58 _12 5041093. E-mail: memendoza@cantv.net and G. L. Uzcanga, Centro de Biociencias y Medicina Molecular, Fundación Instituto de Estudios Avanzados – IDEA, Caracas, Venezuela. Tel: +58 212 9035112. Fax: +58 212 9035157. E-mail: guzcanga@idea.gob.ve
*Corresponding authors: M. Mendoza, Centro de Estudios Biomédicos y Veterinarios, Instituto de Estudios Científicos y Tecnológicos, Universidad Nacional Experimental Simón Rodríguez, Apartado Postal 47925, Caracas, Venezuela. Tel: +58 212 5041853. Fax: +58 _12 5041093. E-mail: memendoza@cantv.net and G. L. Uzcanga, Centro de Biociencias y Medicina Molecular, Fundación Instituto de Estudios Avanzados – IDEA, Caracas, Venezuela. Tel: +58 212 9035112. Fax: +58 212 9035157. E-mail: guzcanga@idea.gob.ve

Summary

Trypanosoma evansi and Trypanosoma vivax have shown a very high immunological cross-reactivity. Anti-T. vivax antibodies were used to monitor changes in the T. evansi intracellular Ca2+ concentration ([Ca2+]i) by fluorometric ratio imaging from single parasites. A short-time exposure of T. evansi parasites to sera from T. vivax-infected bovines induced an increase in [Ca2+]i, which generated their complete lysis. The parasite [Ca2+]i boost was reduced but not eliminated in the absence of extracellular Ca2+ or following serum decomplementation. Decomplemented anti-T. evansi VSG antibodies also produced an increase in the parasite [Ca2+]i, in the presence of extracellular Ca2+. Furthermore, this Ca2+ signal was reduced following blockage with Ni2+ or in the absence of extracellular Ca2+, suggesting that this response was a combination of an influx of Ca2+ throughout membrane channels and a release of this ion from intracellular stores. The observed Ca2+ signal was specific since (i) it was completely eliminated following pre-incubation of the anti-VSG antibodies with the purified soluble VSG, and (ii) affinity-purified anti-VSG antibodies also generated an increase in [Ca2+]i by measurements on single cells or parasite populations. We also showed that an increase of the T. evansi [Ca2+]i by the calcium A-23187 ionophore led to VSG release from the parasite surface. In addition, in vivo immunofluorescence labelling revealed that anti-VSG antibodies induced the formation of raft patches of VSG on the parasite surface. This is the first study to identify a ligand that is coupled to calcium flux in salivarian trypanosomes.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aray, C., Uzcanga, G., Soto, H. and Mendoza, M. (1998). Ensayo inmunoenzimático para el diagnóstico de la tripanosomiasis bovina causada por Trypanosoma sp. Seroprevalencia en el municipio Monagas del Estado Guárico-Venezuela. Revista Científica de la Facultad de Ciencias Veterinarias – LUZ 8, 114116.Google Scholar
Barry, J. D. (1979). Capping of variable antigen on Trypanosoma brucei, and its immunological and biological significance. Journal of Cell Science 37, 287302.CrossRefGoogle ScholarPubMed
Benz, R., Schmid, A., Wiedmer, T. and Sims, P. J. (1986). Single-channel analysis of the conductance fluctuations induced in lipid bilayer membranes by complement proteins C5b-9. The Journal of Membrane Biology 94, 3745. doi: 10.1007/BF01901011.CrossRefGoogle ScholarPubMed
Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D. C., Lennard, N. J., Caler, E., Hamlin, N. E., Haas, B., Bohme, U., Hannick, L., Aslett, M. A., Shallom, J., Marcello, L., Hou, L., Wickstead, B., Alsmark, U. C., Arrowsmith, C., Atkin, R. J., Barron, A. J., Bringaud, F., Brooks, K., Carrington, M., Cherevach, I., Chillingworth, T. J., Churcher, C., Clark, L. N., Corton, C. H., Cronin, A., Davies, R. M., Doggett, J., Djikeng, A., Feldblyum, T., Field, M. C., Fraser, A., Goodhead, I., Hance, Z., Harper, D., Harris, B. R., Hauser, H., Hostetler, J., Ivens, A., Jagels, K., Johnson, D., Johnson, J., Jones, K., Kerhornou, A. X., Koo, H., Larke, N., Landfear, S., Larkin, C., Leech, V., Line, A., Lord, A., Macleod, A., Mooney, P. J., Moule, S., Martin, D. M., Morgan, G. W., Mungall, K., Norbertczak, H., Ormond, D., Pai, G., Peacock, C. S., Peterson, J., Quail, M. A., Rabbinowitsch, E., Rajandream, M. A., Reitter, C., Salzberg, S. L., Sanders, M., Schobel, S., Sharp, S., Simmonds, M., Simpson, A. J., Tallon, L., Turner, C. M., Tait, A., Tivey, A. R., Van Aken, S., Walker, D., Wanless, D., Wang, S., White, B., White, O., Whitehead, S., Woodward, J., Wortman, J., Adams, M. D., Embley, T. M., Gull, K., Ullu, E., Barry, J. D., Fairlamb, A. H., Opperdoes, F., Barrell, B. G., Donelson, J. E., Hall, N., Fraser, C. M., Melville, S. E. and El-Sayed, N. M. (2005). The genome of the African trypanosome Trypanosoma brucei. Science 309, 416422. doi: 10.1126/science.1112631.CrossRefGoogle ScholarPubMed
Bowles, D. J. and Voorheis, H. P. (1982). Release of the surface coat from the plasma membrane of intact bloodstream forms of Trypanosoma brucei requires Ca2+. FEBS Letters 139, 1721. doi:10.1016/0014-5793(82)80477-8.CrossRefGoogle ScholarPubMed
Brown, D. A. and London, E. (1998). Functions of lipid rafts in biological membranes. Annual Review of Cell and Developmental Biology 14, 111136. doi: 10.1146/annurev.cellbio.14.1.111.CrossRefGoogle ScholarPubMed
Bubis, J., Millan, E. J. and Martinez, R. (1993). Identification of guanine nucleotide binding proteins from Trypanosoma cruzi. Biological Research 26, 177188.Google ScholarPubMed
Bulow, R., Nonnengasser, C. and Overath, P. (1989). Release of the variant surface glycoprotein during differentiation of bloodstream to procyclic forms of Trypanosoma brucei. Molecular and Biochemical Parasitology 32, 8592. doi:10.1016/0166-6851(89)90132-1.CrossRefGoogle ScholarPubMed
Camargo, R. E., Uzcanga, G. L. and Bubis, J. (2004). Isolation of two antigens from Trypanosoma evansi that are partially responsible for its cross-reactivity with Trypanosoma vivax. Veterinary Parasitology 123, 6781. doi:10.1016/j.vetpar.2004.01.022.CrossRefGoogle ScholarPubMed
Campbell, A. K., Daw, R. A. and Luzio, J. P. (1979). Rapid increase in intracellular free Ca2+ induced by antibody plus complement. FEBS Letters 107, 5560. doi:10.1016/0014-5793(79)80462-7.CrossRefGoogle ScholarPubMed
Campbell, A. K., Daw, R. A., Hallett, M. B. and Luzio, J. P. (1981). Direct measurement of the increase in intracellular free calcium ion concentration in response to the action of complement. The Biochemical Journal 194, 551560.CrossRefGoogle Scholar
Campbell, A. K. and Luzio, J. P. (1981). Intracellular free calcium as a pathogen in cell damage initiated by the immune system. Experientia 37, 11101112. doi:10.1007/BF02085041.CrossRefGoogle ScholarPubMed
Catisti, R., Uyemura, S., Docampo, R. and Vercesi, A. E. (2000). Calcium mobilization by arachidonic acid in trypanosomatids. Molecular and Biochemical Parasitology 105, 261271. doi:10.1016/S0166-6851(99)00186-3.CrossRefGoogle ScholarPubMed
Colina, C., Flores, A., Rojas, H., Acosta, A., Garrido, M. R., Israel, A., Castillo, C., DiPolo, R. and Benaim, G. (2005). Ceramide increases cytoplasmic Ca2+ concentration in Jurkat T cells by liberation of calcium from intracellular stores and activation of a store-operated calcium channel. Archives of Biochemistry and Biophysics 436, 333345. doi:10.1016/j.abb.2005.02.014.CrossRefGoogle Scholar
De Gee, A. L. W., Shah, S. P. and Doley, J. J. (1982). Trypanosoma vivax: The course of infection with three stabilates in inbred strains of mice. Experimental Parasitology 54, 3339. doi:10.1016/0014-4894(82)90107-2.CrossRefGoogle Scholar
Denny, P. W., Field, M. C. and Smith, D. F. (2001). GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Letters 491, 148153. doi:10.1016/S0014-5793(01)02172-X.CrossRefGoogle ScholarPubMed
Denny, P. W. and Smith, D. F. (2004). Rafts and sphingolipid biosynthesis in the kinetoplastid parasitic protozoa. Molecular Microbiology 53, 725733. doi:10.1111/j.1365-2958.2004.04208.x.CrossRefGoogle ScholarPubMed
Desquesnes, M. and Tresse, L. (1996). Evaluation of sensitivity of PCR for detecting DNA of Trypanosoma vivax with several methods of blood sample preparations. Revue d'élevage et de Médecine Vétérinaire des Pays Tropicaux 49, 322327.Google ScholarPubMed
Donelson, J. E. (1995). Mechanisms of antigenic variation in Borrelia hermsii and African trypanosomes. The Journal of Biological Chemistry 270, 77837786.CrossRefGoogle ScholarPubMed
Donelson, J. E. (2003). Antigenic variation and the African trypanosome genome. Acta Tropica 85, 391404. doi:10.1016/S0001-706X(02)00237-1.CrossRefGoogle ScholarPubMed
Doyle, J. J., Behin, R., Mauel, J. and Rowe, D. S. (1974). Antibody-induced movement of membrane components of Leishmania enriettii. The Journal of Experimental Medicine 139, 10611069. doi:10.1084/jem.139.5.1061.CrossRefGoogle ScholarPubMed
Dwyer, D. M. (1976). Antibody-induced modulation of Leishmania donovani surface membrane antigens. Journal of Immunology 117, 20812091.CrossRefGoogle ScholarPubMed
Eintracht, J., Maathai, P., Mellors, A. and Ruben, L. (1998). Calcium entry in Trypanosoma brucei is regulated by phospholipase A2 and arachidonic acid. The Biochemical Journal 336, 659666.CrossRefGoogle ScholarPubMed
Engstler, M., Thilo, L., Weise, F., Grünfelder, C. G., Schwarz, H., Boshart, M. and Overath, P. (2004). Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. Journal of Cell Science 117, 11051115. doi:10.1242/jcs.00938.CrossRefGoogle ScholarPubMed
Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. The Journal of Biological Chemistry 260, 34403450.CrossRefGoogle ScholarPubMed
Harder, T., Scheiffele, P., Verkade, P. and Simons, K. (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. The Journal of Cell Biology 141, 929942. doi:10.1083/jcb.141.4.929.CrossRefGoogle ScholarPubMed
Hiscox, S., Hallett, M. B., Morgan, B. P. and van den Berg, C. W. (2002). GPI-anchored GFP signals Ca2+ but is homogeneously distributed on the cell surface. Biochemical and Biophysical Research Communications. 293, 714721. doi:10.1016/S0006-291X(02)00280-2.CrossRefGoogle ScholarPubMed
Jokiranta, T. S., Jokipii, L. and Meri, S. (1995). Complement resistance of parasites. Scandinavian Journal of Immunology 42, 920. doi:10.1111/j.1365-3083.1995.tb03620.x.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle ScholarPubMed
Laffafian, I., Davies, E. V., Campbell, A. K. and Hallett, M. B. (1995). Complement component C9-dependent cytosolic free Ca2+ rise and recovery in neutrophils. Cell Calcium 17, 279286. doi:10.1016/0143-4160(95)90074-8.CrossRefGoogle ScholarPubMed
Lanham, S. M. and Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521534. doi:10.1016/0014-4894(70)90120-7.CrossRefGoogle ScholarPubMed
Mahan, S. M., Hendersoshot, L. and Black, S. J. (1986). Control of trypanodestructive antibody responses and parasitemia in mice infected with Trypanosoma (Duttonella) vivax. Infection and Immunity 54, 213221.CrossRefGoogle ScholarPubMed
Matsudaira, P. (1987). Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. The Journal of Biological Chemistry 262, 1003510038.CrossRefGoogle ScholarPubMed
Mendoza, M., Mijares, A., Rojas, H., Ramos, M. and Dipolo, R. (2001). Trypanosoma evansi: A convenient model for studying intracellular Ca+2 homeostasis using fluorometric ratio imaging from single parasites. Experimental Parasitology 99, 213219. doi:10.1006/expr.2001.4654.CrossRefGoogle ScholarPubMed
Mendoza, M., Mijares, A., Rojas, H., Rodríguez, J. P., Urbina, J. A. and DiPolo, R. (2002). Physiological and morphological evidences for the presence of acidocalcisomes in Trypanosoma evansi: single cell fluorescence and 31P NMR studies. Molecular and Biochemical Parasitology 125, 2333. doi:10.1016/S0166-6851(02)00166-4.CrossRefGoogle Scholar
Mendoza, M., Uzcanga, G., Pacheco, R., Bubis, J. and Mijares, A. (2004 a). Effects of anti-variant surface glycoprotein antibodies on the Trypanosoma evansi intracellular Ca2+ concentration. Proceedings of the IXth European Multicolloquium of Parasitology 2, 117122.Google Scholar
Mendoza, M., Mijares, A., Rojas, H., Colina, C., Cervino, V., DiPolo, R. and Benaim, G. (2004 b). Evaluation of the presence of a thapsigargin-sensitive calcium store in trypanosomatids using Trypanosoma evansi as a model. The Journal of Parasitology 90, 11811183.CrossRefGoogle ScholarPubMed
Moreno, S. N. and Docampo, R. (2003). Calcium regulation in protozoan parasites. Current Opinion in Microbiology 6, 359364. doi:10.1016/S1369-5274(03)00091-2.CrossRefGoogle ScholarPubMed
Morgan, B. P. and Campbell, A. K. (1985). The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. The Biochemical Journal 231, 205208.CrossRefGoogle ScholarPubMed
Murray, M. and Urquhart, G. M. (1977). Immunoprophylaxis against African trypanosomiasis. Advances in Experimental Medicine and Biology 93, 209241.CrossRefGoogle ScholarPubMed
Musoke, A. J. and Barbet, A. F. (1977). Activation of complement by variant-specific surface antigen of Trypanosoma cruzi. Nature, London 270, 438440. doi:10.1038/270438a0.CrossRefGoogle Scholar
Newsholme, P., Adogu, A. A., Soos, M. A. and Hales, C. N. (1993). Complement-induced Ca2+influx in cultured fibroblasts is decresed by the calcium-channel antagonist nifedipine or by some bivalent cation. The Biochemical Journal 295, 773779.CrossRefGoogle Scholar
Nielsen, K. (1985). Complement in trypanosomiasis. In Immunology and Pathogenesis of Trypanosomiasis (ed. Tizard, I.), pp. 133144. CRC Press/USA, Boca Raton, FL, USA.Google Scholar
Nolan, D. P., Jackson, D. G., Biggs, M. J., Brabazon, E. D., Payes, A., Van Laethem, F., Paturiaux-Hanocq, F., Elliot, J. F., Voorheis, H. P. and Pays, E. (2000). Characterization of a novel alanine-rich protein located in surface microdomains in Trypanosoma brucei. The Journal of Parasitology 275, 40724080.Google ScholarPubMed
O'Beirne, C., Lowry, C. M. and Voorheis, H. P. (1998). Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation-disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Molecular and Biochemical Parasitology 91, 165193. doi:10.1016/S0166-6851(97)00191-6.CrossRefGoogle ScholarPubMed
Pizzo, P., Giurisato, M., Tassi, M., Benedetti, A., Pozzan, T. and Viola, A. (2002). Lipid rafts and T cell receptor signaling: a critical re-evaluation. European Journal of Immunology 32, 30823091. doi: 10.1002/1521-4141(200211)32:11<3082::AID-IMMU3082>3.0.CO;2-2.3.0.CO;2-2>CrossRefGoogle Scholar
Seyfang, A., Mecke, D. and Duszenko, M. (1990). Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein. The Journal of Protozoology 37, 546552. doi:10.1111/j.1550-7408.1990.tb01263.x.CrossRefGoogle ScholarPubMed
Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature, London 387, 569572. doi:10.1038/42408.CrossRefGoogle ScholarPubMed
Taylor, K. A. (1998). Immune responses of cattle to African trypanosomes: protective or pathogenic?. International Journal for Parasitology 28, 219240. doi:10.1016/S0020-7519(97)00154-9.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoresis transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 43504354.CrossRefGoogle ScholarPubMed
Tung, A. S. (1983). Production of large amounts of antibodies, nonspecific immunoglobulins, and other serum proteins in ascitic fluids of individual mice and guinea pigs. Methods in Enzymology 93, 1223. doi:10.1016/S0076-6879(83)93032-X.CrossRefGoogle ScholarPubMed
Uzcanga, G., Mendoza, M., Aso, P. M. and Bubis, J. (2002). Purification of a 64 kDa antigen from Trypanosoma evansi that exhibits cross-reactivity with Trypanosoma vivax. Parasitology 124, 287299. doi:10.1017/S0031182001001214.CrossRefGoogle ScholarPubMed
Uzcanga, G. L., Perrone, T., Noda, J. A., Pérez-Pazos, J., Medina, R., Hoebeke, J. and Bubis, J. (2004). Variant surface glycoprotein from Trypanosoma evansi is partially responsible for the cross-reaction between Trypanosoma evansi and Trypanosoma vivax. Biochemistry 43, 595606. doi: 10.1021/bi0301946.CrossRefGoogle ScholarPubMed
Voorheis, H. P., Bowles, D. J. and Smith, G. A. (1982). Characteristics of the release of the surface coat protein from bloodstream forms of Trypanosoma brucei. The Journal of Biological Chemistry 257, 23002304.CrossRefGoogle ScholarPubMed
Voorheis, H. P. and Martin, B. R. (1981). Characteristics of the calcium-mediated mechanism activating adenylate cyclase in Trypanosoma brucei. European Journal of Biochemistry 116, 471477. doi:10.1111/j.1432-1033.1981.tb05360.x.CrossRefGoogle ScholarPubMed
Webster, P., Russo, D. C. and Black, S. J. (1990). The interaction of Trypanosoma brucei with antibodies to variant surface glycoproteins. Journal of Cell Science 96, 249255.CrossRefGoogle ScholarPubMed
Woo, P. T. K. (1970). The haematocrit centrifuge technique for the diagnosis of African trypanosomiasis. Acta Tropica 27, 384386.Google ScholarPubMed
Zambrano-Villa, S., Rosales-Borjas, D., Carrero, J. C. and Ortiz-Ortiz, L. (2002). How protozoan parasites evade the immune response. Trends in Parasitology 18, 272278. doi:10.1016/S1471-4922(02)02289-4.CrossRefGoogle ScholarPubMed