Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T04:05:46.701Z Has data issue: false hasContentIssue false

Analysis of a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei

Published online by Cambridge University Press:  06 April 2009

W. C. Gibson
Affiliation:
Department of Pathology, University of Bristol, School of Veterinary Science, Langford, Bristol BS18 7DU

Summary

Two trypanosome clones, representing East and West African homozygotes at 2 isoenzyme loci (T. b. rhodesiense MHOM/ZM/74/58 [CLONE B] and T. b. brucei MSUS/CI/78/TSW 196 [CLONE A]), were cotransmitted through tsetse flies and the resulting trypanosome populations checked for the presence of non-parental karyotypes by pulsed-field gel electrophoresis. Ten clones isolated from these populations proved to have 5 different recombinant genotypes by analysis of nuclear and kinetoplast DNA (kDNA) polymorphisms. It is inferred that genetic exchange occurred between the 2 trypanosome clones in the fly, as previously reported for 2 other T. brucei spp. clones by Jenni and colleagues. For the most part, the hybrid clones shared many characteristics with both parents and their genotypes were consistent with segregation and reassortment of parental alleles. The least amount of genetic material exchanged was kDNA alone. Regarding the mechanism of genetic exchange, several hybrid clones had identical and unique nuclear DNA polymorphisms, but different kDNA type. Assuming that the same reassortment of nuclear markers is unlikely to occur by chance, these clones most probably arose from a predecessor carrying both types of kDNA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernards, A., Van Der Ploeg, L. H. T., Frasch, A. C. C., Borst, P., Boothroyd, J. C., Coleman, S. & Cross, G. A. M. (1981). Activation of trypanosome surface glycoprotein genes involves a duplication transposition leading to an altered 3′ end. Cell 27, 497505.CrossRefGoogle Scholar
Borst, P. (1986). Discontinuous transcription and antigenic variation in trypanosomes. Annual Review of Biochemistry 55, 701–32.CrossRefGoogle ScholarPubMed
Borst, P., Weijers, P. J. & Brakenhoff, G.J. (1982). Analysis by electron microscopy of the variable segment in the maxi-circle of kinetoplast DNA from Trypanosoma brucei. Biochimica et Biophysica Acta 699, 272–80.CrossRefGoogle ScholarPubMed
Cibulskis, R. E. (1988). Origins and organization of genetic diversity in natural populations of Trypanosoma brucei. Parasitology 96, 303–22.CrossRefGoogle ScholarPubMed
Clayton, C. E. (1985). Structure and regulated expression of genes encoding fructose bisphosphate aldolase in Trypanosoma brucei. EMBO Journal 4, 29973003.CrossRefGoogle ScholarPubMed
Cleveland, L. R. (1956). Brief accounts of the sexual cycles of the flagellates of Cryptocercus. Journal of Protozoology 3, 161–80.CrossRefGoogle Scholar
Frasch, A. C. C., Borst, P. & Van Den Burg, J. (1982). Rapid evolution of genes coding for variant surface glycoproteins in trypanosomes. Gene 17, 197211.CrossRefGoogle ScholarPubMed
Gibson, W. C. & Borst, P. (1986). Size-fractionation of the small chromosomes of Trypanozoon and Nannomonas trypanosomes by pulsed field gradient gel electrophoresis. Molecular and Biochemical Parasitology 18, 127–40.CrossRefGoogle ScholarPubMed
Gibson, W. C., Dukes, P. & Gashumba, J. K. (1988). Species-specific DNA probes for the identification of trypanosomes in tsetse. Parasitology 97, 6373.CrossRefGoogle ScholarPubMed
Gibson, W. C., Fase-Fowler, F. & Borst, P. (1985 a). Further analysis of intraspecific variation in Trypanosoma brucei using restriction site polymorphisms in the maxi-circle of kinetoplast DNA. Molecular and Biochemical Parasitology 15, 2136.CrossRefGoogle ScholarPubMed
Gibson, W. C., Marshall, T. F. DE C. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.CrossRefGoogle Scholar
Gibson, W., Mehlitz, D., Lanham, S. M. & Godfrey, D. G. (1978). The identification of Trypanosoma brucei gambiense in Liberian pigs and dogs by isoenzymes and by resistance to human plasma. Tropenmedizin und Parasitologie 29, 335–45.Google ScholarPubMed
Gibson, W. C., Osinga, K. A., Michels, P. A. M. & Borst, p. (1985 b). Trypanosomes of subgenus Trypanozoon are diploid for housekeeping genes. Molecular and Biochemical Parasitology 16, 231–42.CrossRefGoogle ScholarPubMed
Hawking, F. (1976). The resistance to human plasma of Trypanosoma brucei, T. rhodesiense and T. gambiense. I. Analysis of the composition of trypanosome strains. Transactions of the Royal Society of Tropical Medicene and Hygiene 70, 504–12.CrossRefGoogle Scholar
Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J. M., Tait, A., Paindavoine, P., Pays, E. & Steinert, M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature, London 322, 173–5.CrossRefGoogle ScholarPubMed
Johnson, P. J. & Borst, P. (1986). Mapping of VSG genes on large expression-site chromosomes of Trypanosoma brucei separated by pulsed field gradient electrophoresis. Gene 43, 213–20.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Le Page, R. F. W., Wells, J. M., Prospero, T. D. & Sternberg, J. (1988). Genetic analysis of hybrid Trypanosoma brucei. In Current Communications in Molecular Biology: Molecular Genetics of Parasitic Protozoa (ed. Turner, M. J. & Arnot, D.) Cold Sping Harbour Laboratory. pp. 6571.Google Scholar
Marchand, M., Kooystra, U., Wierenga, R. K., Lambeir, A., Van Beeumen, J., Opperdoes, F. R. & Michels, P. A. M. (1989). Glucose phosphate isomerase from Trypanosoma brucei. Cloning and characterization of the gene and analysis of the enzyme. European Journal of Biochemistry (in the Press).CrossRefGoogle ScholarPubMed
Marchand, M., Poliszczak, A., Gibson, W. C., Wierenga, R. K., Opperdoes, F. R. & Michels, P. A. M. (1988). Characterisation of the genes for fructose bisphosphate aldolase in Trypanosoma brucei. Molecular and Biochemical Parasitology 29, 6576.CrossRefGoogle ScholarPubMed
Maudlin, I. & Welburn, S. C. (1987). Lectin mediated establishment of midgut infections of Trypanosoma congolense and Trypanosoma brucei in Glossina morsitans. Tropenmedizin und Parasitologie 38, 167–70.Google ScholarPubMed
Mehlitz, D., Zillmann, U., Scott, C. M. & Godfrey, D. G. (1982). Epidemiological studies on the animal reservoir of gambiense sleeping sickness. Part III. Characterisation of Trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmedizin und Parasitologie 33, 113–18.Google ScholarPubMed
Osinga, K. A., Swinkels, B. W., Gibson, W. C., Borst, P., Veeneman, G. H., Van Boom, J. H., Michels, P. A. M. & Opperdoes, F. R. (1985). Topogenesis of microbody enzymes: a sequence comparison of the genes for the glycosomal (microbody) and cytosolic phosphoglycerate kinases of Trypanosoma brucei. EMBO Journal 4, 3811–17.CrossRefGoogle ScholarPubMed
Paindavoine, P., Zampetti-Bosseler, F., Pays, E., Schweizer, J., Guyaux, M., Jenni, L. & Steinert, M. (1986). Trypanosome hybrids generated in tsetse flies by nuclear fusion. EMBO Journal 5, 3631–6.CrossRefGoogle ScholarPubMed
Rickman, L. R. (1977). Variation in the test responses of clone-derived Trypanosoma (Trypanozoon) brucei brucei and T. (T.) b. rhodesiense relapse antigenic variants, examined by a modified blood incubation infectivity test and its possible significance in Rhodesian sleeping sickness transmission. Medical Journal of Zambia 11, 3141.Google Scholar
Rickman, L. R. & Robson, J. (1970). The testing of proven Trypanosoma brucei and T. rhodesiense strains by the blood incubation infectivity test. Bulletin of the World Health Organization 42, 911–16.Google Scholar
Schwartz, D. C., & Cantor, C. R. (1984). Separation of yeast chromosome-sized DNA by pulsed field gradient gel electrophoresis. Cell 37, 6775.CrossRefGoogle ScholarPubMed
Shapiro, S. Z., Naessens, J., Liesegang, B., Moloo, S. K. & Magondu, J. (1984). Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. Acta tropica 41, 313–23.Google ScholarPubMed
Simpson, L. & Berliner, J. (1974). Isolation of kDNA from Leishmania tarentolae in the form of a network. Journal of Protozoology 21, 382–93.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Sternberg, J., Ross, C. A. & Tait, A. (1988 b). Nuclear DNA content of Trypanosoma congolense. Ada tropica 45, 2731.Google ScholarPubMed
Sternberg, J., Tait, A., Haley, S., Wells, J. M., Le Page, R. W. F., Schweizer, J. & Jenni, L. (1988 a). Gene exchange in African trypanosomes: characterisation of a new hybrid genotype. Molecular and Biochemical Parasitology 27, 191200.CrossRefGoogle ScholarPubMed
Swinkels, B. W., Gibson, W. C., Osinga, K. A., Kramer, R., Veeneman, G. H., Van Boom, J. H. & Borst, P. (1986). Characterisation of the gene for the microbody (glycosomal) triose phosphate isomerase of Trypanosoma brucei. EMBO Journal 5, 1291–8.CrossRefGoogle ScholarPubMed
Tait, A. (1980). Evidence for diploidy and mating in trypanosomes. Nature, London 287, 536–8.CrossRefGoogle ScholarPubMed
Tait, A., Sternberg, J. & Turner, C. M. R. (1988). Genetic exchange in Trypanosoma brucei: allelic segregation and reassortment. In Current Communications in Molecular Biology: Molecular Genetics of Parasitic Protozoa (ed. Turner, M. J & Arnot, D.), Cold Spring Harbour Laboratory. pp. 5864.Google Scholar
Thomashow, L. S., Milhausen, M., Rutter, M. & Agabian, N. (1983). Tubulin genes are tandemly linked and clustered in the genome of Trypanosoma brucei. Cell 32, 3543.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Bernards, A., Rijsewijk, F. & Borst, p. (1982). Characterisation of the DNA duplication—transposition that controls the expression of two genes for variant surface glycoproteins in Trypanosoma brucei. Nucleic Acids Research 10, 593609.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Schwartz, D. C., CANTOR, C. R. & BORST, P. (1984). Antigenic variation in Trypanosoma brucei analysed by electrophoretic separation of chromosome sized DNA molecules. Cell 37, 7784.CrossRefGoogle Scholar
Van Der Ploeg, L. H. T., Valerio, D., De Lange, T., Bernards, A., Borst, P. & Grosveld, F. G. (1982). An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Research 10, 5905–23.CrossRefGoogle ScholarPubMed
Van Meirvenne, N., Magnus, E. & Janssens, P. G. (1976). The effect of normal human serum on trypanosomes of distinct antigenic type (ETat 1 to 12) isolated from a strain of Trypanosoma brucei rhodesiense. Annales de la Sociátá beige de medecine tropicale 56, 5563.Google ScholarPubMed
Wells, J. M., Prospero, T. D., Jenni, L. & Le Page, R. W. F. (1987). DNA contents and molecular karyotypes of hybrid Trypanosoma brucei. Molecular and Biochemical Parasitology 24, 103–16.CrossRefGoogle ScholarPubMed
Zampetti-Bosseler, F., Schweizer, J., Pays, E., Jenni, L. & Steinert, M. (1986). Evidence for haploidy in metacyclic forms of Trypanosoma brucei. Proceedings of the National Academy of Sciences, USA 83, 6063–4.CrossRefGoogle ScholarPubMed