Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T22:55:15.740Z Has data issue: false hasContentIssue false

Air travel and vector-borne disease movement

Published online by Cambridge University Press:  23 March 2012

A. J. TATEM*
Affiliation:
Department of Geography, University of Florida, Gainesville, USA Emerging Pathogens Institute, University of Florida, Gainesville, USA Fogarty International Center, National Institutes of Health, Bethesda, USA
Z. HUANG
Affiliation:
Department of Geography, University of Florida, Gainesville, USA Emerging Pathogens Institute, University of Florida, Gainesville, USA
A. DAS
Affiliation:
Emerging Pathogens Institute, University of Florida, Gainesville, USA
Q. QI
Affiliation:
Department of Geography, University of Florida, Gainesville, USA
J. ROTH
Affiliation:
School of Public Health and Health Services, The George Washington University, Washington DC, USA
Y. QIU
Affiliation:
Department of Geography, University of Florida, Gainesville, USA Emerging Pathogens Institute, University of Florida, Gainesville, USA
*
*Author for correspondence: Dr Andrew J Tatem, Emerging Pathogens Institute, University of Florida, Gainesville, FL. USA. E-mail: Andy.Tatem@gmail.com; Tel: 352-273-9373. Fax: 352-273-9496

Summary

Recent decades have seen substantial expansions in the global air travel network and rapid increases in traffic volumes. The effects of this are well studied in terms of the spread of directly transmitted infections, but the role of air travel in the movement of vector-borne diseases is less well understood. Increasingly however, wider reaching surveillance for vector-borne diseases and our improving abilities to map the distributions of vectors and the diseases they carry, are providing opportunities to better our understanding of the impact of increasing air travel. Here we examine global trends in the continued expansion of air transport and its impact upon epidemiology. Novel malaria and chikungunya examples are presented, detailing how geospatial data in combination with information on air traffic can be used to predict the risks of vector-borne disease importation and establishment. Finally, we describe the development of an online tool, the Vector-Borne Disease Airline Importation Risk (VBD-Air) tool, which brings together spatial data on air traffic and vector-borne disease distributions to quantify the seasonally changing risks for importation to non-endemic regions. Such a framework provides the first steps towards an ultimate goal of adaptive management based on near real time flight data and vector-borne disease surveillance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitio, A. (2002). Disinsection of aircraft. Bulletin of the World Health Organization 80, 257.Google ScholarPubMed
Bajardi, P., Poletto, C., Ramasco, J., Tizzoni, M., Colizza, V. and Vespignani, A. (2011). Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic PLoS ONE 6, e16591.CrossRefGoogle ScholarPubMed
Balcan, D., Colizza, V., Goncalves, B., Hu, H., Ramasco, J. J. and Vespignani, A. (2009). Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences, USA 106, 2148421489.CrossRefGoogle ScholarPubMed
Balcan, D., Hu, H., Goncalves, B., Bajardi, P., Poletto, C., Ramasco, J. J., and Paolotti, D., (2009). Seasonal transmission potential and activity peaks of the influenza A (H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Medicine 7, 45.CrossRefGoogle ScholarPubMed
Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I. and Nelson, A. (2006). Determining global population distribution: methods, applications and data. Advances in Parasitology 62, 119156.CrossRefGoogle ScholarPubMed
Benedict, M. Q., Levine, R. S., Hawley, W. A. and Lounibos, L. P. (2007). Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne and Zoonotic Diseases 7, 7685. doi:10.1089/vbz.2006.0562.CrossRefGoogle ScholarPubMed
Bodenmann, P. and Genton, B. (2006). Chikungunya: an epidemic in real time. The Lancet 368, 258.CrossRefGoogle ScholarPubMed
Brooker, S., Hay, S. I. and Bundy, D. A. (2002). Tools from ecology: useful for evaluating infection risk models? Trends in Parasitology 18, 7074. doi:S1471492201022231.CrossRefGoogle ScholarPubMed
Brownstein, J. S., Freifeld, C. C., Reis, B. Y. and Mandl, K. D. (2008). Surveillance Sans Frontières: Internet-based emerging infectious disease intelligence and the HealthMap project. PLoS Medicine 5, e151. doi:10.1371/journal.pmed.0050151.CrossRefGoogle ScholarPubMed
Carlson, D. A., Hogsette, J., Kline, D. L., Geden, C. D. and Vandermeer, R. K. (2006). Prevention of mosquitoes (Diptera: Culicidae) and house flies (Diptera: Muscidae) from entering simulated aircraft with commercial air curtain units. Journal of Economic Entomology 99, 182193.CrossRefGoogle ScholarPubMed
Charrel, R. N., de Lamballerie, X. and Raoult, D. (2007). Chikungunya outbreaks – the globalization of vectorborne diseases. New England Journal of Medicine 356, 769–71. doi:10.1056/NEJMp078013.CrossRefGoogle ScholarPubMed
Charrel, R. N., de Lamballerie, X. and Raoult, D. (2008). Seasonality of mosquitoes and chikungunya in Italy. Lancet Infectious Diseases 8, 5.CrossRefGoogle ScholarPubMed
Cibulskis, R. E., Bell, D., Christophel, E. M., Hii, J., Delacollette, C., Bakyaita, N. and Aregawi, M. W. (2007). Estimating trends in the burden of malaria at country level. American Journal of Tropical Medicine and Hygiene 77, 133137.CrossRefGoogle ScholarPubMed
Colizza, V., Barrat, A., Barthelemy, M. and Vespignani, A. (2005). Prediction and predictability of global epidemics: the role of the airline transportation network. Biocomplexity 20, arXiv:q-bio.OT/0507029v1.Google Scholar
Colizza, V., Barrat, A., Barthélemy, M. and Vespignani, A. (2006). The role of the airline transportation network in the prediction and predictability of global epidemics. Proceedings of the National Academy of Sciences, USA 103, 20152020.CrossRefGoogle ScholarPubMed
Dye, C. and Gay, N. (2003). Modeling the SARS epidemic. Science 300, 18841885.CrossRefGoogle ScholarPubMed
Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S. and Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129151.CrossRefGoogle Scholar
Elith, J., Leathwick, J. R. and Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology 77, 802813.CrossRefGoogle ScholarPubMed
European Centers for Disease Control (2009). Development of Aedes albopictus risk maps. ECDC, Stockholm, Sweden.Google Scholar
Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A. and Iamsirithaworn, S. (2005). Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209214.CrossRefGoogle ScholarPubMed
Franco-Paredes, C. and Santos-Preciado, J. I. (2006). Problem pathogens: prevention of malaria in travellers. The Lancet Infectious Diseases 6, 139149.CrossRefGoogle ScholarPubMed
Freedman, D. O., Weld, L. H., Kozarsky, P. E., Fisk, T., Robins, R., Sonnenburg, F. and Keystone, J. S. (2006). Spectrum of disease and relation to place of exposure among ill returned travelers. New England Journal of Medicine 354, 119130.CrossRefGoogle ScholarPubMed
Gething, P. W., Noor, A. M., Gikandi, P. W., Ogara, E. A. A., Hay, S. I., Nixon, M. S., Snow, R. W. and Atkinson, P. M. (2006). Improving imperfect data from health management information systems in Africa using space-time geostatistics. PLoS Medicine 3, e271.CrossRefGoogle ScholarPubMed
Gething, P. W., Patil, A. P., Smith, D. L., Guerra, C. A., Elyazar, I. R. F., Johnston, G. L., Tatem, A. J. and Hay, S. I. (2011). A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal 10, 378.CrossRefGoogle ScholarPubMed
Grais, R. F., Ellis, J. H. and Glass, G. E. (2003). Forecasting the geographical spread of smallpox cases by air travel. Epidemiology and Infection 131, 849857.CrossRefGoogle ScholarPubMed
Gratz, N. G. (2004). Critical review of the vector status of Aedes albopictus. Medical and Veterinary Entomology 18, 215227.CrossRefGoogle ScholarPubMed
Gratz, N. G., Steffen, R. and Cocksedge, W. (2000). Why aircraft disinsection? Bulletin of the World Health Organization 78, 9951004.Google ScholarPubMed
Gray, R. R., Tatem, A. J., Johnson, J. A., Alekseyenko, A. V., Pybus, O. G., Suchard, M. A. and Salemi, M. (2011). Bayesian phylogenetics of bacterial genomes: inferring the pandemic spread of Methicillin resistant Staphylococcus aureus ST239. Molecular Biology and Evolution in press. http://mbe.oxfordjournals.org/content/early/2010/12/23/molbev.msq319CrossRefGoogle Scholar
Gray, R. R., Tatem, A. J., Lamers, S., Hou, W., Laeyendecker, O., Serwadda, D., Sewankambo, N. and Salemi, M. (2009). Spatial phylodynamics of HIV-1 epidemic emergence in east Africa. AIDS 23, F9F17.CrossRefGoogle ScholarPubMed
Griffits, T. and Griffits, J. (1931). Mosquitoes transported by airplanes: staining methods used in determining their importation. Public Health Reports 46, 27752782.CrossRefGoogle Scholar
Guerra, C. A., Gikandi, P. W., Tatem, A. J., Noor, A. M., Smith, D. L., Hay, S. I. and Snow, R. W. (2008). The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Medicine 5, e38.CrossRefGoogle Scholar
Guerra, C. A., Hay, S. I., Lucioparedes, L. S., Gikandi, P. W., Tatem, A. J., Noor, A. M. and Snow, R. W. (2007). Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malaria Journal 6, 17.CrossRefGoogle ScholarPubMed
Guillet, P., Germain, M. C., Giacomini, T., Chandre, F., Akogbeto, M., Faye, O. and Kone, A. (1998). Origin and prevention of airport malaria in France. Tropical Medicine and International Health 3, 700705.CrossRefGoogle ScholarPubMed
Guimera, R., Mossa, S., Turtschi, A. and Amaral, L. A. N. (2005). The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences, USA 102, 77947799.CrossRefGoogle ScholarPubMed
Haggett, P. (2000). The Geographical Structure of Epidemics. Oxford, Clarendon.Google Scholar
Hawley, W. A., Reiter, P., Copeland, S., Pumpuni, C. B. and Craig, G. B. (1987). Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science 236, 11141115.CrossRefGoogle ScholarPubMed
Hay, S. I., Guerra, C. A., Gething, P. W., Patil, A. P., Tatem, A. J., Noor, A. M., Kabaria, C. W. and Snow, R. W. (2009). World malaria map: Plasmodium falciparum endemicity in 2007. PLoS Medicine 6, e1000048.CrossRefGoogle ScholarPubMed
Hay, S. I., Okiro, E. A., Gething, P. W., Patil, A. P., Tatem, A. J., Guerra, C. A. and Snow, R. W. (2010). Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Medicine 7, e100029.CrossRefGoogle ScholarPubMed
Hay, S. I., Tatem, A. J., Graham, A. J., Goetz, S. J. and Rogers, D. J. (2006). Global environmental data for mapping infectious disease distribution. Advances in Parasitology 62, 3777.CrossRefGoogle ScholarPubMed
Health Metrics Network. (2005). Statistics Saves Lives: Strengthening Country Health Information Systems. Geneva: Health Metrics Network.Google Scholar
Hosseini, P., Sokolow, S. H., Vandegrift, K. J., Kilpatrick, A. M. and Daszak, P. (2010). Predictive power of air travel and socio-economic data for early pandemic spread. PloS One 5, e12763.CrossRefGoogle ScholarPubMed
Hufnagel, L., Brockmann, D. and Geisel, T. (2004). Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences, USA 101, 1512415129.CrossRefGoogle Scholar
Hutchinson, R., Bayoh, M. and Lindsay, S. (2005). Risk of airport malaria in the UK. European Mosquito Bulletin 19, 1213.Google Scholar
IATA (2010). World Air Transport Statistics 2010. Montreal, IATA.Google Scholar
Jelinek, T., Schulte, C., Behrens, R., Grobusch, M. P., Coulaud, J. P., Bisoffi, Z. and Matteelli, A. (2002). Imported falciparum malaria in Europe: sentinel surveillance data from the European network on surveillance of imported infectious diseases. Clinical Infectious Diseases 34, 572576.CrossRefGoogle ScholarPubMed
Johansson, M. A., Arana-Vizcarrondo, N., Biggerstaff, B. J., Gallagher, N. J., Marano, N. and Staples, J. E. (2012). Assessing the risk of international spread of Yellow Fever Virus: A mathematical analysis of an urban outbreak in Asuncion, 2008. American Journal of Tropical Medicine and Hygiene 86, 349358CrossRefGoogle ScholarPubMed
Johansson, M. A., Arana-Vizcarrondo, N., Biggerstaff, B. J., Staples, J. E., Gallagher, N. J. and Marano, N. (2011). On the treatment of airline travelers in mathematical models. PLoS One 6(7), e22151.CrossRefGoogle ScholarPubMed
Jones, K. E., Patel, N. G., Levy, M. A., Storeyguard, A., Balk, D., Gittleman, J. L. and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451, 990994.CrossRefGoogle ScholarPubMed
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M. and Potter, G. L. (2002). NCEP–DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society 83, 16311643.CrossRefGoogle Scholar
Karlen, A. (1995). Plague's Progress. London, Indigo.Google Scholar
Kenah, E., Chao, D. L., Matrajt, L., Halloran, M. E. and Longini, I. M. (2011). The global transmission and control of influenza. PloS One 6, e19515.CrossRefGoogle ScholarPubMed
Killeen, G. F. (2003). Following in Soper's footsteps: northeast Brazil 63 years after eradication of Anopheles gambiae. Lancet Infectious Diseases 3, 663666.CrossRefGoogle ScholarPubMed
Kilpatrick, A. M. (2011). Globalization, land use, and the invasion of West Nile Virus. Science 334, 323327.CrossRefGoogle ScholarPubMed
Kubiak, R. J., Arinaminpathy, N. and McLean, A. R. (2010). Insights into the evolution and emergence of a novel infectious disease. PLoS Computational Biology 6, e1000947.CrossRefGoogle ScholarPubMed
Laird, M. (1984). Commerce and the Spread of Pests and Disease Vectors. New York, Praeger.Google Scholar
Le Menach, A., Tatem, A. J., Cohen, J. M., Hay, S. I., Randell, H., Patil, A. P. and Smith, D. L. (2011). Travel risk, malaria importation and malaria transmission in Zanzibar. Scientific Reports 1, 17.CrossRefGoogle ScholarPubMed
Lemey, P., Rambaut, A., Drummond, A. J. and Suchard, M. A. (2009). Bayesian phylogeography finds its roots. PLoS Computational Biology 5, e1000520.CrossRefGoogle ScholarPubMed
Longini, I. M., Fine, P. E. M. and Thacker, S. B. (1986). Predicting the global spread of new infectious agents. American Journal of Epidemiology 123, 383391.CrossRefGoogle ScholarPubMed
Lounibos, L. P. (2002). Invasions by insect vectors of human disease. Annual Review of Entomology 47, 233266.CrossRefGoogle ScholarPubMed
MacArthur, J. R., Holtz, T. H., Jenkins, J., Newell, J. P., Koehler, J. E., Parise, M. E. and Kachur, S. P. (2001). Probable locally acquired mosquito-transmitted malaria in Georgia, 1999. Clinical Infectious Diseases 32, E124–8.CrossRefGoogle ScholarPubMed
Massey, A. (1933). Epidemiology in Relation to Air Travel. London, H. K. Lewis and Co. Limited.Google Scholar
Maurice, S. (2009). International travel and fever screening during epidemics. Eurosurveillance 15.Google Scholar
Moffett, A., Strutz, S., Guda, N., González, C., Ferro, M. C., Sánchez-Cordero, V. and Sarkar, S. (2009). A global public database of disease vector and reservoir distributions. PLoS Neglected Tropical Diseases 3, e378.CrossRefGoogle ScholarPubMed
Murray, C. J. L., Lopez, A. D. and Wibulpolprasert, S. (2004). Monitoring global health: Time for new solutions. British Medical Journal 329, 10961100.CrossRefGoogle ScholarPubMed
Patil, A. P., Gething, P. W., Piel, F. B. and Hay, S. I. (2011). Bayesian geostatistics in health cartography: the perspective of malaria. Trends in Parasitology 27, 246253.CrossRefGoogle ScholarPubMed
Perrings, C., Dehnen-Schmutz, K., Touza, J. and Williamson, M. (2005). How to manage biological invasions under globalization. Trends in Ecology and Evolution 20, 212215.CrossRefGoogle ScholarPubMed
Rezza, G., Nicoletti, L., Angelini, R., Romi, R., Finarelli, A. C., Panning, M. and Cordioli, P. (2007). Infection with chikungunya virus in Italy: an outbreak in a temperate region. The Lancet 370, 1840–6.CrossRefGoogle Scholar
Riley, S. (2007). Large-scale spatial-transmission models of infectious disease. Science 316, 12981301.CrossRefGoogle ScholarPubMed
Rogers, D. J. (2006). Models for vectors and vector-borne diseases. Advances in Parasitology 62, 135.CrossRefGoogle ScholarPubMed
Rogers, D. J., Wilson, A. J., Hay, S. I. and Graham, A. J. (2006). The global distribution of yellow fever and dengue. Advances in Parasitology 62, 181220.CrossRefGoogle ScholarPubMed
Russell, R. C. (1987). Survival of insects in the wheelbays of Boeing 747B aircraft on flights between tropical and temperate airports. Bulletin of the World Health Organisation 65, 659662.Google ScholarPubMed
Russell, R. C. and Paton, R. (1989). In-flight disinsection as an efficacious procedure for preventing international transport of insects of public health importance. Bulletin of the World Health Organization 67, 543547.Google ScholarPubMed
Rvachev, L. A. and Longini, I. M. (1985). A mathematical model for the global spread of influenza. Mathematical Biosciences 75, 322.CrossRefGoogle Scholar
Scharlemann, J. P. W., Benz, D., Hay, S. I., Purse, B. V., Tatem, A. J., Wint, G. R. W. and Rogers, D. J. (2008). Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PloS One 3, e1408.CrossRefGoogle ScholarPubMed
Schuffenecker, I., Iteman, I., Michault, A., Murri, S., Frangeul, L., Vaney, M.-C. and Lavenir, R. (2006). Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Medicine 3, e263.CrossRefGoogle ScholarPubMed
Shu, P.-Y., Chien, L.-J., Chang, S.-F., Su, C.-L., Kuo, Y.-C., Liao, T.-L. and Ho, M.-S. (2005). Fever screening at airports and imported dengue. Emerging Infectious Diseases 11, 460462.CrossRefGoogle ScholarPubMed
Shu, P.-Y., Yang, C.-F., Su, C.-L., Chen, C.-Y., Chang, S.-F., Tsai, K.-H. and Cheng, C.-H. (2008). Two imported chikungunya cases, Taiwan. Emerging Infectious Diseases 14, 13251326.CrossRefGoogle ScholarPubMed
Sinka, M. E., Bangs, M. J., Manguin, S., Chareonviriyaphap, T., Patil, A. P., Temperley, W. H., Gething, P. W. and Hay, S. I. (2011). The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasites and Vectors 4, 89.CrossRefGoogle ScholarPubMed
Sinka, M. E., Bangs, M. J., Manguin, S., Coetzee, M., Mbogo, C. M., Hemingway, J., Patil, A. P. and Hay, S. I. (2010 a). The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasites and Vectors 3, 117.CrossRefGoogle ScholarPubMed
Sinka, M. E., Rubio-Palis, Y., Manguin, S., Patil, A. P., Temperley, W. H., Gething, P. W., Van Boeckel, T. and Hay, S. I. (2010 b). The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic precis. Parasites and Vectors 3, 72.CrossRefGoogle ScholarPubMed
Smith, D. L., Drakeley, C. J., Chiyaka, C. and Hay, S. I. (2010). A quantitative analysis of transmission efficiency versus intensity for malaria. Nature Communications 1, 108.CrossRefGoogle ScholarPubMed
Solomon, S. L., Daniel, K. L., Rutledge, T. F. and Boyd, M. F. (2009). Morbidity and Mortality Weekly Report Malaria Surveillance — United States, 2007, 58.Google Scholar
Soper, F. L. and Wilson, D. B. (1943). Anopheles gambiae in Brazil: 1930 to 1940. New York, Rockefeller Foundation.Google Scholar
Talbi, C., Lemey, P., Suchard, M. A., Abdelatif, E., Elharrak, M., Nourlil, J., Tatem, A. J. and Jalal, N. (2010). Phylodynamics and human-mediated dispersal of a zoonotic virus. PLoS Pathogens 6, e1001166.CrossRefGoogle ScholarPubMed
Tatarsky, A., Aboobakar, S., Cohen, J. M., Gopee, N., Bheecarry, A., Moonasar, D., Phillips, A. A., Smith, D. L. and Sabot, O. (2011). Preventing the reintroduction of malaria in Mauritius: A programmatic and financial assessment. PLoS ONE 6, e23832.CrossRefGoogle ScholarPubMed
Tatem, A. J. (2009). The worldwide airline network and the dispersal of exotic species: 2007–2010. Ecography 32, 94102.CrossRefGoogle ScholarPubMed
Tatem, A. J., Guerra, C. A., Kabaria, C. W., Noor, A. M. and Hay, S. I. (2008). Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malaria Journal 7, 218.CrossRefGoogle ScholarPubMed
Tatem, A. J. and Hay, S. I. (2007). Climatic similarity and biological exchange in the worldwide airline transportation network. Proceedings Biological sciences/The Royal Society 274, 14891496.CrossRefGoogle ScholarPubMed
Tatem, A. J., Hay, S. I. and Rogers, D. J. (2006 a). Global traffic and disease vector dispersal. Proceedings of the National Academy of Sciences, USA 103, 62426247.CrossRefGoogle ScholarPubMed
Tatem, A. J., Rogers, D. J. and Hay, S. I. (2006 b). Estimating the malaria risk of African mosquito movement by air travel. Malaria Journal 5, 57.CrossRefGoogle ScholarPubMed
Tatem, A. J., Rogers, D. J. and Hay, S. I. (2006 c). Global transport networks and infectious disease spread. Advances in Parasitology 62, 293343.CrossRefGoogle ScholarPubMed
Tatem, A. J., Rogers, D. J. and Hay, S. I. (2006 d). T8.5: Traffic in disease vectors: 2005, 2015 and 2030. Commissioned as part of the U.K. Government's Foresight project, Infectious Diseases: preparing for the future. London, U.K, Office of Science and Innovation.Google Scholar
Tatem, A. J. and Smith, D. L. (2010). International population movements and regional Plasmodium falciparum malaria elimination strategies. Proceedings of the National Academy of Sciences, USA 107, 1222212227.CrossRefGoogle ScholarPubMed
Tatem, A. J., Qiu, Y., Smith, D. L., Sabot, O., Ali, A. S. and Moonen, B. (2009). The use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents. Malaria Journal 8, 287.CrossRefGoogle ScholarPubMed
Thomas, R. (1992). Geomedical Systems: Intervention and Control. London, Routledge.Google Scholar
Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. and Higgs, S. (2007). A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathogens 3, e201.CrossRefGoogle ScholarPubMed
Upham, P., Thomas, C., Gillingwater, D. and Raper, D. (2003). Environmental capacity and airport operations: current issues and future prospects. Journal of Air Transport Management 9, 145151.CrossRefGoogle Scholar
Van den Broeck, W., Gioannini, C., Gonçalves, B., Quaggiotto, M., Colizza, V. and Vespignani, A. (2011). The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infectious Diseases 11, 37. doi:10.1186/1471-2334-11-37.CrossRefGoogle Scholar
Vogel, G. (2003). SARS outbreak – Modelers struggle to grasp epidemic's potential scope. Science 300, 558559.CrossRefGoogle ScholarPubMed
Wichmann, O. and Jelinek, T. (2004). Dengue in travelers: a review. Journal of Travel Medicine 11, 161170.CrossRefGoogle ScholarPubMed
Williams, C. (1940). Disinsectization of aircraft. Public Health Reports 55, 10051010.CrossRefGoogle Scholar
Wilson, M. E. (1995). Travel and the emergence of infectious diseases. Emerging Infectious Diseases 1, 3946.CrossRefGoogle ScholarPubMed
Wilson, M. E. (2003). The traveller and emerging infections: sentinel, courier, transmitter. Journal of Applied Microbiology 94, 1S11S.CrossRefGoogle ScholarPubMed
Woodyard, C. (2001). Fliers fume over planes treated with pesticides. USA Today, October 9 2010.Google Scholar
World Health Organisation (1998). Recommendations of the disinsecting of aircraft. Weekly Epidemiological Record, 15, 109111.Google Scholar
World Health Organisation (2007). The World Health Report 2007: A safer future, global public health security in the 21st century. Geneva, World Health Organization.Google Scholar
World Health Organization (2008). The World Health Report 2008: Primary Health Care – Now More Than Ever. Geneva, World Health Organization.Google Scholar
Zucker, J. R. (1996). Changing patterns of autochthonous malaria transmission in the United States: a review of recent outbreaks. Emerging infectious diseases 2, 3743.CrossRefGoogle ScholarPubMed