Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T08:42:46.224Z Has data issue: false hasContentIssue false

Acanthamoeba differentiation: a two-faced drama of Dr Jekyll and Mr Hyde

Published online by Cambridge University Press:  06 February 2012

RUQAIYYAH SIDDIQUI
Affiliation:
Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
RICKY DUDLEY
Affiliation:
School of Biological and Chemical Sciences, Birkbeck, University of London, UK
NAVEED AHMED KHAN*
Affiliation:
Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
*
*Corresponding author: Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan. Tel: +92 (0)21 3486 4540. Fax: +92 (0)21 3493 4294. E-mail: Naveed5438@gmail.com

Summary

The ability of cyst-forming protists such as Acanthamoeba to escape death by transforming into a cyst form, that is resistant to harsh physiological, environmental and pharmacological conditions, has continued to pose a serious challenge to human and animal health. A complete understanding of the fundamental principles of genome evolution and biochemical pathways of cellular differentiation offers unprecedented opportunities to counter detrimental outcomes. Acanthamoeba can elude inhospitable conditions by forming cysts. Here we unravel the processes involved in the phenotypic switching of Acanthamoeba, which are critical in our efforts to find potential targets for chemotherapy.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achar, S. B. and Weisman, R. A. (1980). Adenylate cyclase activity during growth and encystment of Acanthamoeba castellanii. Biochimica et Biophysica Acta 629, 225234. doi:10.1016/0304-4165(80)90096-3.CrossRefGoogle ScholarPubMed
Anderson, I. J., Watkins, R. F., Samuelson, J., Spencer, D. F., Majoros, W. H., Gray, M. W. and Loftus, B. J. (2005). Gene discovery in the Acanthamoeba castellanii genome. Protist 156, 203214. doi:10.1016/j.protis.2005.04.001.Google Scholar
Band, R. N. and Mohrlok, S. (1973). The cell cycle and induced amitosis in Acanthamoeba. Journal of Protozoology 20, 654657. doi: 10.1111/j.1550-7408.1973.tb03592.x.Google Scholar
Barrett, R. A. and Alexander, M. (1977). Resistance of cysts of amoebae to microbial decomposition. Applied and Environmental Microbiology 33, 670674.Google Scholar
Bauer, H. (1967). Ultrastruktur and Zellwand-bildung von Acanthamoeba sp. Vierteljahresschr. Abhandlungen der Naturforschenden Gesellschaft in Zürich 12, 173.Google Scholar
Bazan-Tejeda, M. L., Arguello-Garcia, R., Bermudez-Cruz, R. M., Robles-Flores, M. and Ortega-Pierres, G. (2007). Protein kinase C isoforms from Giardia duodenalis: identification and functional characterization of a beta-like molecule during encystment. Archives of Microbiology 187, 5566.Google Scholar
Bowers, B. and Korn, E. D. (1969). The fine structure of Acanthamoeba castellanii. II. Encystment. Journal of Cell Biology 41, 786805. doi:10.1083/jcb.41.3.786Google Scholar
Byers, T. J., Kim, B. G., King, L. E. and Hugo, E. R. (1991). Molecular aspects of the cell cycle and encystment of Acanthamoeba. Review of Infectious Diseases 13, S373S384. doi:10.1093/clind/13.Supplement_5.S373Google Scholar
Chambers, J. A. and Thompson, J. E. (1976). Phagocytosis and pinocytosis in Acanthamoeba castellanii. Journal of General Microbiology 92, 246250. doi:10.1099/00221287-92-2-246Google Scholar
De La Roche, M. A., Smith, J. L., Carrasco, S., Merida, I., Licate, L., Cote, G. P. and Egelhoff, T. T. (2002). Dictyostelium discoideum has a single diacylglycerol kinase gene with similarity to mammalian theta isoforms. The Biochemical Journal 368, 809815. doi:10.1042/BJ20021027Google Scholar
Dembinsky, A., Rubin, H. and Ravid, S. (1997). Autophosphorylation of Dictyostelium myosin II heavy chain-specific protein kinase C is required for its activation and membrane dissociation. Journal of Biological Chemistry 272, 828834. doi:10.1074/jbc.272.2.828Google Scholar
Deslauriers, R., Jarrell, H. C., Byrd, R. A. and Smith, I. C. P. (1980). Observation by 13C NMR of metabolites in differentiating amoeba. FEBS Letters 118, 185190. doi:10.1016/0014-5793(80)80215-8Google Scholar
Detke, S. and Paule, M. R. (1978). DNA-dependent RNA polymerase from Acanthamoeba castellanii. Comparison of the catalytic properties and subunit architectures of the trophozoites and cyst enzymes. Biochimica et Biophysica Acta 520, 376392. doi:10.1016/0005–2787(78)90235-6Google Scholar
Detke, S. and Paule, M. R. (1979). DNA-dependent RNA polymerase III from Acanthamoeba castellanii. Comparison of the catalytic properties of the trophozoites and cyst enzymes. Journal of Protozoology 26, 319323. doi:10.1111/j.1550-7408.1979.tb02788.xGoogle Scholar
Dudley, R., Alsam, S. and Khan, N. A. (2008). The role of proteases in the differentiation of Acanthamoeba castellanii. FEMS Microbiology Letters 286, 915. doi:10.1111/j.1574-6968.2008.01249.xGoogle Scholar
Hax, W. M. A., Demel, R. A., Spies, F., Vossenberg, J. B. J. and Linnemans, W. A. M. (1974). Increased phospholipase A activity and formation of communicative contacts between Acanthamoeba castellanii cells: effects of 3′,5′-cyclic AMP. Experimental Cell Research 89, 311319.Google Scholar
Hirukawa, Y., Nakato, H., Izumi, S., Tsuruhara, T. and Tomino, S. (1998). Structure and expression of a cyst specific protein of Acanthamoeba castellanii. Biochimica et Biophysica Acta 1398, 4756. doi:10.1016/S0167-4781(98)00026Google Scholar
Hugo, E. R. and Byers, T. J. (1993). S-adenosyl-L-methionine decarboxylase of Acanthamoeba castellanii (Neff): purification and properties. The Biochemical Journal 295, 203209.Google Scholar
Jantzen, H. (1981). Ribosomal phosphoproteins in Acanthamoeba castellanii. European Journal of Biochemistry 119, 347352. doi:10.1111/j.1432-1033.1981.tb05614.xCrossRefGoogle ScholarPubMed
Jantzen, H. and Schulze, I. (1988). Relationship between the timing of DNA replication and the developmental competence in Acanthamoeba castellanii. Journal Cell Science 91, 389399.CrossRefGoogle ScholarPubMed
Khan, N. A. (2006). Acanthamoeba: biology and increasing importance in human health. FEMS Microbiology Reviews 30, 564595.Google Scholar
Leitsch, D., Köhsler, M., Marchetti-Deschmann, M., Deutsch, A., Allmaier, G., Duchêne, M. and Walochnik, J. (2010). Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryotic Cell 9, 611618. doi:10.1128/EC.00300-09CrossRefGoogle ScholarPubMed
Lorenzo-Morales, J., Kliescikova, J., Martinez-Carretero, E., De Pablos, L. M., Profotova, B., Nohynkova, E., Osuna, A. and Valladares, B. (2008). Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukaryotic Cell 7, 509517. doi:10.1128/EC.00316-07Google Scholar
Marciano-Cabral, F. and Cabral, G. (2003). Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews 16, 273307. doi:10.1128/CMR.16.2.273–307.2003CrossRefGoogle ScholarPubMed
Martin, S. M. and Byers, T. J. (1976). Acid hydrolase activity during growth and encystment in Acanthamoeba castellanii. Journal of Protozoology 23, 608613. doi:10.1111/j.1550-7408.1976.tb03851.xCrossRefGoogle ScholarPubMed
Martinez, A. J. and Visvesvara, G. S. (1997). Free-living, amphizoic and opportunistic amebas. Brain Pathology 7, 583598. doi:10.1111/j.1750-3639.1997.tb01076.xGoogle Scholar
Mazur, T., Hadas, E. and Iwanicka, I. (1995). The duration of the cyst stage and the viability and virulence of Acanthamoeba isolates. Annals of Tropical Medicine and Parasitology 46, 106108.Google ScholarPubMed
Mehdi, H. and Garg, N. K. (1987). Changes in the lipid composition and activities of isocitrate dehydrogenase and isocitrate lyase during encystation of Acanthamoeba culbertsoni strain A-1. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 633636. doi:10.1016/0035-9203(87)90437-8Google Scholar
Moon, E. K., Chung, D. I., Hong, Y. C., Ahn, T. I. and Kong, H. H. (2008). Acanthamoeba castellanii: gene profile of encystation by ESTs analysis and KOG assignment. Experimental Parasitology 119, 111116. doi:10.1016/j.exppara.2008.01.001Google Scholar
Moon, E. K., Chung, D. I., Hong, Y. C. and Kong, H. H. (2007). Differentially expressed genes of Acanthamoeba castellanii during encystation. Korean Journal of Parasitology 45, 283285. doi:10.3347/kjp.2007.45.4.283Google Scholar
Moon, E. K., Chung, D. I., Hong, Y. and Kong, H. H. (2011). Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellanii cyst ESTs. Experimental Parasitology 127, 811816. doi:10.1016/j.exppara.2011.01.003Google Scholar
Muller, M. (1969). Lysosomal hydrolases in Acanthamoeba sp. Journal of Protozoology 16, 428431. doi:10.1111/j.1432-1033.1969.tb00626.xGoogle Scholar
Muller, M. and Moller, K. M. (1969). Urate oxidase and its association with peroxisomes in Acanthamoeba sp. European Journal of Biochemistry 9, 424430.Google Scholar
Neff, R. J. and Neff, R. H. (1969). The biochemistry of amoebic encystment. Symposia of the Society for Experimental Biology 23, 5181.Google Scholar
Roti Roti, L. W. and Stevens, A. R. (1974). Effect of 5-bromodeoxyuridine on growth, encystment, and excystment of Acanthamoeba castellanii. Journal of Cell Biology 61, 233237. doi:10.1083/jcb.61.1.233Google Scholar
Roti Roti, L. W. and Stevens, A. R. (1975). DNA synthesis in growth and encystment of Acanthamoeba castellanii. Journal of Cell Science 17, 503515.Google Scholar
Rubin, R. W., Hill, M. C., Hepworth, P. and Boehmer, J. (1976). Isolation and electrophoretic analysis of nucleoli, phenol-soluble nuclear proteins, and outer cyst walls from Acanthamoeba castellanii during encystation initiation. Journal of Cell Biology 68, 740751. doi:10.1083/jcb.68.3.740CrossRefGoogle ScholarPubMed
Rubin, R. W. and Maher, M. (1976). Actin turnover during encystation in Acanthamoeba. Experimental Cell Research 103, 159168.CrossRefGoogle ScholarPubMed
Rudick, V. L. and Weisman, R. A. (1974). Uridine diphosphate glucose pyrophosphorylase of Acanthamoeba castellanii. Purification, kinetic, and developmental studies. Journal of Biological Chemistry 249, 78327840.Google ScholarPubMed
Schulze, I. and Jantzen, H. (1982). Coordinate regulation of synthesis of ribosomal proteins during encystation of Acanthamoeba castellanii. European Journal of Biochemistry 126, 285292. doi:10.1111/j.1432-1033.1982.tb06777.xGoogle Scholar
Sobota, A. and Przelecka, A. (1981 a). Visualization of calcium-binding sites at plasma membrane of shock-frozen Acanthamoeba cells. Acta Histochemica 68, 125129.Google Scholar
Sobota, A. and Przelecka, A. (1981 b). Develpmental changes in the localization of calcium-binding sites in Acanthamoeba castellanii. Histochemistry 71, 135144. doi:10.1007/BF00592577Google Scholar
Sriram, R., Shoff, M., Booton, G., Fuerst, P. and Visvesvara, G. S. (2008). Survival of Acanthamoeba cysts after desiccation for more than 20 years. Journal of Clinical Microbiology 46, 40454048. doi:10.1128/JCM.01903-08Google Scholar
Stevens, A. R. and Pachler, P. F. (1973). RNA synthesis and turnover during density-inhibited growth and encystment of Acanthamoeba castellanii. Journal of Cell Biology 57, 525537. doi:10.1083/jcb.57.2.525Google Scholar
Stohr, M., Bommert, K., Schulze, I. and Jantzen, H. (1987). The cell cycle and its relationship to development in Acanthamoeba castellanii. Journal of Cell Science 88, 579589.Google Scholar
Sykes, D. E. and Band, R. N. (1985). Polyphenol oxidase produced during encystation of Acanthamoeba castellanii. Journal of Protozoology 32, 512517. doi:10.1111/j.1550-7408.1985.tb04052.xGoogle Scholar
Tomlinson, G. and Jones, E. A. (1962). Isolation of cellulose from the cyst wall of a soil amoeba. Biochimica et Biophysica Acta 63, 194200. doi:10.1016/0006-3002(62)90353-0Google Scholar
Verma, A. K. and Raizada, M. K. (1975). The inhibitory effect of glucose on the differentiation of trophic Hartmannella culbertsoni into viable cysts. Cell Differentiation 4, 167177. doi:10.1016/0045-6039(75)90038-XGoogle Scholar
Visvesvara, G. S., Moura, H. and Schuster, F. L. (2007). Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology and Medical Microbiology 50, 126. doi:10.1016/0006-3002(62)90353-0CrossRefGoogle ScholarPubMed
Volkonsky, M. (1931). Hartmanella castellanii Douglas, et classification des hartmannelles. Archives de Zoologie Experimentale et Generale 72, 317339.Google Scholar
Weisman, R. A. (1976). Differentiation in Acanthamoeba castellanii. Annual Reviews of Microbiology 30, 189219. doi:10.1146/annurev.mi.30.100176.001201Google Scholar
William, F. and Loomis, , Jr. (1969). Acetylglucosaminidase, an Early Enzyme in the Development of Dictyostelium discoideum. Journal of Bacteriology 97, 1149–54.Google Scholar
Zhu, C. M., Cumaraswamy, A. and Henney, H. R. Jr. (1989). Comparison of polyamine and S-adenosylmethionine contents of growing and encysted Acanthamoeba isolates. Molecular and Cellular Biochemistry 90, 145153. doi:10.1007/BF00221214Google Scholar