Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:05:27.445Z Has data issue: false hasContentIssue false

Plasticity of gp63 gene organization in Leishmania (Viannia) braziliensis and Leishmania (Viannia) peruviana

Published online by Cambridge University Press:  06 April 2009

K. Victoir
Affiliation:
Instituut voor Tropische Geneeskunde‘Prince Leopold’, 155 Nationalestraat, B-2000 Antwerpen, Belgium
J. C. Dujardin
Affiliation:
Instituut voor Tropische Geneeskunde‘Prince Leopold’, 155 Nationalestraat, B-2000 Antwerpen, Belgium
S. De Doncker
Affiliation:
Instituut voor Tropische Geneeskunde‘Prince Leopold’, 155 Nationalestraat, B-2000 Antwerpen, Belgium
D. C. Barker
Affiliation:
Cambridge University, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
J. Arevalo
Affiliation:
Universidad Peruana Cayetano Heredia, AP 4314, Lima 100, Peru
R. Hamers
Affiliation:
Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium
D. Le Ray
Affiliation:
Instituut voor Tropische Geneeskunde‘Prince Leopold’, 155 Nationalestraat, B-2000 Antwerpen, Belgium

Summary

The genomic organization of gp63 genes in 4 and 7 isolates of Leishmania braziliensis and L. peruviana, respectively was studied by RFLP analysis with 3 restriction enzymes (Bgl I, Sal I and Apa I). Our results showed a marked polymorphism among isolates. Some characters were specific to L. braziliensis or to L. peruviana, and others specific to the respective biogeographical populations of L. peruviana. The average minimum copy number of gp63 genes was found to be higher in L. braziliensis (71) than in L. peruviana (46), suggesting that deletion of gp63 genes might be partially involved in the size decrease of the chromosome bearing gp63 genes, observed between those 2 species (from 700 to 610 kb). Our results may suggest the existence of at least 2 arrays of heterologous gp63 repeats, varying in relative copy number between L. braziliensis and L. peruviana, and among isolates of the latter species. Rearrangement of the gp63 genes was observed during long-term in vitro maintenance of a reference strain of L. braziliensis. These observations document the existence of a dynamic gp63 gene organization in Leishmania of the braziliensis complex.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arana, M., Evans, D. A., Zolessi, A., Llanos-Cuentas, A. & Arevalo, J. (1990). Biochemical characterization of L. (V.) braziliensis and L. (V.) peruviana by isoenzyme electrophoresis. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 526–9.CrossRefGoogle ScholarPubMed
Bañuls, A. L. (1993). Analyse génétique d'isolats naturels sud-américains de Leishmania montrant de possibles phénomènes de recombinaison. DEA thesis, Université de Montpellier II.Google Scholar
Button, L. L., Russell, D. G., Klein, H. L., Medina-Acosta, E., Karess, R. E. & McMaster, W. R. (1989). Genes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology 32, 271–84.CrossRefGoogle Scholar
Cruz, A. K., Titus, R. & Beverley, S. M. (1993). Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proceedings of the National Academy of Sciences, USA 90, 1599–603.CrossRefGoogle ScholarPubMed
Dujardin, J. C., Gajendran, N., Hamers, R., Mathijsen, G., Urjel, R., Recacoechea, M., Villaroel, G., Bermudez, H., Desjeux, P., De Doncker, S. & Le Ray, D. (1987). Leishmaniasis in the Lowlands of Bolivia. VII. Characterization and identification of Bolivian isolates by PFG karyotyping. In Leishmaniasis: the First Centenary (1885–1985). New Strategies for Control, NATO ASI series A, Vol. 163 (ed. Hart, D.), pp. 137148. New York: Plenum Press.Google Scholar
Dujardin, J. C., Gajendran, N., Arevalo, J., Llanos-Cuentas, A., Guerra, H., Gomez, J., Arroyo, J., De Doncker, S., Jacquet, D., Hamers, R. & Le Ray, D. (1993 a). Karyotype polymorphism and conserved characters in the Leishmania (Viannia) braziliensis complex explored with chromosome-derived probes. Annales de la Société belge de Médecine Tropicale 73, 101–18.Google ScholarPubMed
Dujardin, J. C., Llanos-Cuentas, A., Caceres, A., Arana, M., Dujardin, J. P., Guerrini, F., Gomez, J., Arroyo, J., De Doncker, S., Jacquet, D., Hamers, R., Guerra, H., Le Ray, D. & Arevalo, j. (1993 b). Molecular karyotype variation of Leishmania (Viannia) peruviana evidences geographical populations in Peru along a North-South cline. Annals of Tropical Medicine and Parasitology 87, 335–47.CrossRefGoogle Scholar
Dujardin, J. C., De Doncker, S., Victoir, K., Le Ray, D., Hamers, R. & Arevalo, j. (1994). Size polymorphism of chromosomes bearing gp63 genes in Leishmania of the braziliensis complex: indication of a rearrangement of the gp63 genes in L. braziliensis and L. peruviana. Annals of Tropical Medicine and Parasitology 88, 445–8.CrossRefGoogle Scholar
Dujardin, J. C., Dujardin, J. P., Tibayrenc, M., Timperman, G., De Doncker, S., Jacquet, D., Arevalo, J., Llanos-Cuentas, A., Guerra, H., Bermudez, H., Hamers, R. & Le Ray, D. (1995). Karyotype plasticity in Neotropical Leishmania: an index for measuring genomic distance among L. (V.) peruviana and L. (V.) braziliensis populations. Parasitology 110, 2130.CrossRefGoogle ScholarPubMed
Guerra, H. (1988). Distribution of Leishmania in Peru. In Research on Control Strategies for the Leishmaniases (ed. Walton, B. C., Wijeyaratne, P. M. & Modabber, F.), pp. 135145. Ottawa: IDRC.Google Scholar
Guerrini, F. (1993). Génétique des populations et phylogénie des Leishmania du Nouveau-Monde. Thése de doctorat, Université de Montpellier II.Google Scholar
Herrer, A. (1962). The incidence of uta (cutaneous leishmaniasis) among the child population of Peru. Scientific Reports of Instituto Superiore di Sanità 2, 131–7.Google Scholar
Iovannisci, D. M. & Beverley, S. M. (1989). Structural alterations of chromosome 2 in Leishmania major as evidence for diploidy, including spontaneous amplification of the mini-exon array. Molecular and Biochemical Parasitology 34, 177–88.CrossRefGoogle ScholarPubMed
Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise de Sciences Naturelles 44, 223–70.Google Scholar
Lamas, G. (1982). A preliminary zoogeographical division of Peru, based on butterfly distributions (Lepidoptera, Papilionoidea). In Biological Diversification in the Tropics (ed. Prance, T. P.), pp. 336357. New York: Columbia University Press.Google Scholar
Llanos-Cuentas, E. A. (1991). Tratamiento de leishmaniasis mucosa: analisis de los factores asociados con la repuesta terapeutica a los antimoniales pentavalentes. Tesis de Doctorado, Universidad Peruana Cayetano Heredia, Lima, Peru.Google Scholar
Lumbreras, H. & Guerra, H. (1985). Leishmaniasis in Peru. In Leishmaniasis, vol. 1 (ed. Chang, K. P. & Bray, R.), pp. 297311. New York: Elsevier.Google Scholar
Medina-Acosta, E., Karess, R. E. & Russell, D. G. (1993 a). Structurally distinct genes for the surface protease of Leishmania mexicana are developmentally regulated. Molecular and Biochemical Parasitology 57, 3146.CrossRefGoogle ScholarPubMed
Medina-Acosta, E., Beverley, S. M. & Russell, D. G. (1993 b). Evolution and expression of the Leishmania surface proteinase (gp63) gene locus. Infectious Agents and Disease 2, 2534.Google ScholarPubMed
Reiner, N. E., Lo, R., Llanos-Cuentas, A., Guerra, H., Button, L. & McMaster, W. R. (1989). Genetic heterogeneity in Peruvian Leishmania isolates. American Journal of Tropical Medicine and Hygiene 41, 416–21.CrossRefGoogle ScholarPubMed
Ridley, D. S. (1987). Pathology. In The Leishmaniases in Biology and Medicine, vol. 2 (ed. Peters, W. & Killick-Kendrick, R.), pp. 666701. London: Academic Press.Google Scholar
Roberts, S. C., Swihart, K. G., Agey, M. W., Ramamoorthy, R., Wilson, M. E. & Donelson, J. E. (1993). Sequence diversity and organization of the msp gene family encoding gp63 of Leishmania chagasi. Molecular and Biochemical Parasitology 62, 157–72.CrossRefGoogle ScholarPubMed
Romero, G. G., Arana, M., Lopez, M., Montoya, I., Bohl, R., Campos, M., Arevalo, J. & Llanos, A. (1987). Characterization of Leishmania species from Peru. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 1424.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning, 2nd edn.New York: Cold Spring Harbor Laboratory Press.Google Scholar
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: Freeman.Google Scholar
Steinkraus, H. B., Greer, J. M., Stephenson, D. C. & Langer, P. J. (1993). Sequence heterogeneity and polymorphic gene arrangements of the Leishmania guyanensis gp63 genes. Molecular and Biochemical Parasitology 62, 173–86.CrossRefGoogle ScholarPubMed
Tobie, E. J., Von Brand, T. & Mehlman, B. (1950). Cultural and physiological observations on Trypanosoma rhodesiense and Trypanosoma gambiense. Journal of Parasitology 36, 4854.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Cornelissen, W. W. C. A., Michels, P. A. M. & Borst, p. (1984). Chromosome rearrangements in Trypanosoma brucei. Cell 32, 213–21.CrossRefGoogle Scholar
Van Meirvenne, N., Janssens, P. G. & Magnus, E. (1975). Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. I. Rationalization of the experimental approach. Annales de la Société Belge de Médecine Tropicale 55, 123.Google ScholarPubMed
Webb, J. R., Button, L. L. & McMaster, W. R. (1991). Heterogeneity of the genes encoding the major surface glycoprotein of Leishmania donovani. Molecular and Biochemical Parasitology 48, 173–84.CrossRefGoogle ScholarPubMed