Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T22:14:22.709Z Has data issue: false hasContentIssue false

Morphological and molecular characterization of Trypanosoma copemani n. sp. (Trypanosomatidae) isolated from Gilbert's potoroo (Potorous gilbertii) and quokka (Setonix brachyurus)

Published online by Cambridge University Press:  06 May 2009

J. M. AUSTEN
Affiliation:
School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
R. JEFFERIES
Affiliation:
School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
J. A. FRIEND
Affiliation:
Science Division, Department of Environment and Conservation, 120 Albany Highway, Albany, Western Australia, 6330
U. RYAN
Affiliation:
School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
P. ADAMS
Affiliation:
School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
S. A. REID*
Affiliation:
School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
*
*Corresponding author: School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150. Tel: +61 8 9360 7423. Fax: +61 8 9310 4144. E-mail: s.reid@murdoch.edu.au

Summary

Little is known of the prevalence and life-cycle of trypanosomes in mammals native to Australia. Native Australian trypanosomes have previously been identified in marsupials in the eastern states of Australia, with one recent report in brush-tailed bettongs (Bettongia penicillata), or woylie in Western Australia in 2008. This study reports a novel Trypanosoma sp. identified in blood smears, from 7 critically endangered Gilbert's potoroos (Potorous gilbertii) and 3 quokkas (Setonix brachyurus) in Western Australia. Trypanosomes were successfully cultured in vitro and showed morphological characteristics similar to members of the subgenus Herpetosoma. Phylogenetic analysis of 18S rRNA gene sequences identified 2 different novel genotypes A and B that are closely related to trypanosomes previously isolated from a common wombat (Vombatus ursinus) in Victoria, Australia. The new species is proposed to be named Trypanosoma copemani n. sp.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bettiol, S. S., Jakes, K., Le, D. D., Goldsmid, J. M. and Hocking, G. (1998). First record of trypanosomes in Tasmanian bandicoots. Journal of Parasitology 84, 538541.CrossRefGoogle ScholarPubMed
Clark, P., Adlard, R. D. and Spratt, D. M. (2004). Haemoparasites of Australian Mammals. In Haematology of Australian Mammals (ed. Clark, P.), pp. 147162. CSIRO Publishing, Collingwood, Australia.CrossRefGoogle Scholar
Courtenay, J. and Friend, J. A. (2004). Gilbert's potoroo recovery plan, July 2003–June 2008. Western Australian Wildlife Management Program 32, 31.Google Scholar
Cox, F. E. G. (1977). Interactions between trypanosomes and piroplasms in mice. Protozoology 111, 129134.Google Scholar
Cunningham, I. (1977). New culture medium for maintenance of tsetse tissue and growth of trypanosomatids. Journal of Protozoology 24, 352359.CrossRefGoogle ScholarPubMed
Dunnet, G. M. and Mardon, (1974). A monograph of Australian fleas (Siphonaptera). Australian Journal of Zoology 30, 1273.Google Scholar
Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Haag, J., O'Huigin, C. and Overath, P. (1998). The molecular phylogeny of trypanosomes: evidence for an early divergence of the Salivaria. Molecular and Biochemical Parasitology 91, 3749.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Stevens, J. R. and Gibson, W. C. (2007). Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Molecular Phylogenetics and Evolution 43, 1525.CrossRefGoogle Scholar
Hamilton, P. B., Stevens, J. R., Gidley, J., Holz, P. and Gibson, W. C. (2005). A new lineage of trypanosomes from Australian vertebrates and terrestrial bloodsucking leeches (Haemadipsidae). International Journal for Parasitology 35, 431443.CrossRefGoogle ScholarPubMed
Hannaert, V., Opperdoes, F. R. and Michels, P. A. (1998). Comparison and evolutionary analysis of the glycosomal glyceraldehyde-3-phosphate dehydrogenase from different kinetoplastida. Journal of Molecular Evolution 47, 728738.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1972). The Trypanosomes of Mammals: A Zoological Monograph. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Jakes, K. A., O'Donoghue, P. J. and Adlard, R. D. (2001). Phylogenetic relationships of Trypanosoma chelodina and Trypanosoma binneyi from Australian tortoises and platypuses inferred from small subunit rRNA analysis. Parasitology 123, 483487.CrossRefGoogle Scholar
Lee, J., Ryan, U., Jefferies, R., McInnes, L., Forshaw, D., Friend, A. and Irwin, P. (2009). Theileria potorous n. sp. (Apicomplexa: Theileridae) in the Gilbert's potoroo (Potorous gilbertii). The Journal of Eukaryotic Microbiology (in the Press.)CrossRefGoogle Scholar
McMillan, B. and Bancroft, B. J. (1973). On the morphology of Trypanosoma binneyi Mackerras, 1959 from the platypus Ornithorhynchus anatinus. International Journal for Parasitology 3, 441442.Google Scholar
Mackerras, M. J. (1959). The haematozoa of Australian mammals. Australian Journal of Zoology 7, 105135.CrossRefGoogle Scholar
Mackerras, I. M. and Mackerras, M. J. (1960). Taxonomy of the common short-nosed marsupial bandicoot of Eastern Queensland. Australian Journal of Science 23, 5153.Google Scholar
Maslov, D. A., Lukes, J., Jirku, M. and Simpson, L. (1996). Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Molecular and Biochemical Parasitology 75, 197205.CrossRefGoogle ScholarPubMed
Noyes, H., Stevens, J. R., Teixeira, M., Phelan, J. and Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal for Parasitology 29, 331339.CrossRefGoogle ScholarPubMed
Noyes, H. A., Stevens, J. R., Teixeira, M., Phelan, J. and Holz, P. (2000). Corrigendum to A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal for Parasitology 30, 228.CrossRefGoogle ScholarPubMed
O'Donoghue, P. J. and Adlard, R. D. (2000). Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45, 1163.Google Scholar
Roberts, F. H. S. (1970). Australian Ticks. Commonwealth Scientific and Industrial Research Organisation, Australia.Google Scholar
Sinclair, E. A., Danks, A. and Wayne, A. F. (1996). Rediscovery of Gilbert's potoroo, Potorous tridactylus, in Western Australia. Australian Mammalogy 19, 6972.CrossRefGoogle Scholar
Smith, A., Clark, P., Averis, S., Lymbery, A. J., Wayne, A. F., Morris, K. D. and Thompson, R. C. (2008). Trypanosomes in a declining species of threatened Australian marsupial, the brush-tailed bettong Bettongia penicillata (Marsupialia: Potoroidae). Parasitology 135, 13291335.CrossRefGoogle Scholar
Stevens, J. R., Teixeira, M. M. G., Bingle, L. E. H. and Gibson, W. C. (1999). The taxonomic position and evolutionary relationships of Trypanosoma rangeli. International Journal for Parasitology 29, 749757.CrossRefGoogle ScholarPubMed
Stevens, J., Noyes, H. and Gibson, W. (1998). The evolution of trypanosomes infecting humans and primates. Memorias do Instituto Oswaldo Cruz 93, 669676.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thekisoe, O. M. M., Honda, T., Fujita, H., Battsetseg, B., Hatta, T., Fujisaki, K., Sugimoto, C. and Inoue, N. (2007). A trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan. Parasitology 134, 967974.CrossRefGoogle ScholarPubMed
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed