Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T00:31:58.972Z Has data issue: false hasContentIssue false

Is there an association of Pneumocystis infection with the presence of arena-, hanta-, and poxvirus antibodies in wild mice and shrews in Finland?

Published online by Cambridge University Press:  25 November 2005

J. LAAKKONEN
Affiliation:
Department of Virology, Haartman Institute, P.O. Box 21, FIN-00014 University of Helsinki, Finland Finnish Forest Research Institute, Vantaa, Finland
E. R. KALLIO
Affiliation:
Department of Virology, Haartman Institute, P.O. Box 21, FIN-00014 University of Helsinki, Finland Finnish Forest Research Institute, Vantaa, Finland Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, P.O. Box 66, FIN-00014 University of Helsinki, Finland
H. KALLIO-KOKKO
Affiliation:
Department of Virology, Haartman Institute, P.O. Box 21, FIN-00014 University of Helsinki, Finland Department of Virology, HUSLAB, P.O. Box 400, FIN-00029 The Hospital District of Helsinki and Vusima, Finland
O. VAPALAHTI
Affiliation:
Department of Virology, Haartman Institute, P.O. Box 21, FIN-00014 University of Helsinki, Finland Department of Virology, HUSLAB, P.O. Box 400, FIN-00029 The Hospital District of Helsinki and Vusima, Finland
A. VAHERI
Affiliation:
Department of Virology, Haartman Institute, P.O. Box 21, FIN-00014 University of Helsinki, Finland
H. HENTTONEN
Affiliation:
Finnish Forest Research Institute, Vantaa, Finland

Abstract

As part of studies on the nature of the endemic virus infections in natural rodent hosts, the possible association of cyst forms of Pneumocystis spp. with the presence of hanta-, cowpox-, and arenavirus antibodies in wild mice (Apodemus flavicollis, N=105; Apodemus agrarius, N=63; Micromys minutus, N=50) and the common shrew (Sorex araneus, N=101) was studied in south-central Finland. One hantavirus (Saaremaa virus, SAAV) seropositive A. agrarius, and 2 cowpoxvirus (CPXV) seropositive S. araneus were detected, and antibodies against an arenavirus (Lymphocytic choriomeningitis virus, LCMV) were found in all 3 mouse species but not in shrews. Cyst forms of Pneumocystis spp. were detected in all species except A. agrarius. There was no significant association between virus antibodies (LCMV in mice, and CPXV in shrews) and cyst forms of Pneumocystis in any of the species. Concurrent presence of virus antibodies (LCMV) and cyst forms of Pneumocystis were detected only in 1 M. minutus. In conclusion, we found no evidence of any association between Pneumocystis and antibodies to any of the viruses tested.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bishop, R., Gurnell, J., Laakkonen, J., Whitwell, K. and Peters, S. ( 1997). Detection of Pneumocystis DNA in the lungs of several species of wild mammal. Journal of Eukaryotic Microbiology 44, 57S.CrossRefGoogle Scholar
Carey, D. E., Reuben, R., Panicker, K. N., Shope, R. E. and Myers, R. M. ( 1971). Thottapalayam virus: a presumptive arbovirus isolated from a shrew in India. Indian Journal of Medical Research 59, 17581760.Google Scholar
Cavanaugh, R. D., Lambin, X., Ergon, T., Bennett, M., Graham, I. M., van Soolingen, D. and Begon, M. ( 2003). Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti). Proceedings of the Royal Society of London, B 271, 859867.Google Scholar
Chantrey, J., Meyer, H., Baxby, D., Begon, M., Bown, K., Hazel, S. M., Jones, T., Montgomery, W. I. and Bennett, M. ( 1999). Cowpox: reservoir hosts and geographic range. Epidemiology and Infection 122, 455460.CrossRefGoogle Scholar
Chowaniec, W., Wescott, R. B. and Congdon, L. L. ( 1972). Interaction of Nematospiroides dubius and influenza virus in mice. Experimental Parasitology 32, 3344.CrossRefGoogle Scholar
Cushion, M. T. ( 2004). Pneumocystis: unraveling the cloak of obscurity. Trends in Microbiology 12, 243249.CrossRefGoogle Scholar
Feore, S. M., Bennett, M., Chantrey, J., Jones, T., Baxby, D. and Begon, M. ( 1997). The effect of cowpox virus infection on fecundity in bank voles and wood mice. Proceedings of the Royal Society of London, B 264, 14571461.CrossRefGoogle Scholar
Grocott, R. G. ( 1955). A stain for fungi in tissue sections and smears. American Journal of Clinical Pathology 25, 975979.CrossRefGoogle Scholar
Hedman, K., Vaheri, A. and Brummer-Korvenkontio, M. ( 1991). Rapid diagnosis of hantavirus disease with an IgG-avidity assay. Lancet 338, 13531356.CrossRefGoogle Scholar
Hubálek, Z. ( 1999). Emmonsiosis of wild rodents and insectivores in Czechland. Journal of Wildlife Diseases 35, 243249.CrossRefGoogle Scholar
Keely, S. P., Fisher, J. M., Cushion, M. T. and Stringer, J. R. ( 2004). Phylogenetic identification of Pneumocystis murina sp. nov., a new species in laboratory mice. Microbiology 150, 11531165.Google Scholar
Laakkonen, J. ( 1995). High prevalence of Pneumocystis carinii in Sorex araneus in Finland. Annales Zoologici Fennici 32, 203207.Google Scholar
Laakkonen, J. ( 1998). Pneumocystis carinii in wildlife (review). International Journal for Parasitology 28, 241252.CrossRefGoogle Scholar
Laakkonen, J., Henttonen, H., Niemimaa, J. and Soveri, T. ( 1999). Seasonal dynamics of Pneumocystis carinii in the field vole, Microtus agrestis, and in the common shrew, Sorex araneus, in Finland. Parasitology 118, 15.CrossRefGoogle Scholar
Laakkonen, J., Henttonen, H., Soveri, T. and Niemimaa, J. ( 1995). Pneumocystis carinii in arvicoline rodents: seasonal, interspecific and geographic differences. Canadian Journal of Zoology 73, 961966.CrossRefGoogle Scholar
Laakkonen, J. and Soveri, T. ( 1995). Characterization of Pneumocystis carinii infection in Sorex araneus from southern Finland. Journal of Wildlife Diseases 31, 228232.CrossRefGoogle Scholar
Laakkonen, J., Sukura, A., Haukisalmi, V. and Henttonen, H. ( 1993). Pneumocystis carinii and helminth parasitism in shrews Sorex araneus and Sorex caecutiens. Journal of Wildlife Diseases 29, 273277.CrossRefGoogle Scholar
Laakkonen, J., Sukura, A., Oksanen, A., Henttonen, H. and Soveri, T. ( 2001). Haemogregarines of the genus Hepatozoon (Apicomplexa: Adeleina) in rodents from northern Europe. Folia Parasitologica 48, 263267.CrossRefGoogle Scholar
Lledó, L., Gegundez, M. I., Saz, J. V., Bahamontes, N. and Meltran, M. ( 2003). Lymphocytic choriomeningitis virus infection in a province of Spain: analysis of sera from the general population and wild rodents. Journal of Medical Virology 70, 273275.CrossRefGoogle Scholar
Medrano, F. J., Montes-Cano, M. and Conde, M. ( 2005). Pneumocystis jirovecii in general population. Emerging Infectious Diseases 11, 245250.CrossRefGoogle Scholar
Palmer, R. J., Settnes, O. P., Lodal, J. and Wakefield, A. E. ( 2000). Population structure of rat-derived Pneumocystis carinii in Danish wild rats. Applied and Environmental Microbiology 66, 49544961.CrossRefGoogle Scholar
Pelkonen, P. M., Tarvainen, K., Hynninen, A., Kallio, E. R. K., Henttonen, H., Palva, A., Vaheri, A. and Vapalahti, O. ( 2003). Cowpox with severe generalized eruption, Finland. Emerging Infectious Diseases 9, 14581461.CrossRefGoogle Scholar
Pena-Cruz, V., Reiss, C. S. and McIntosh, K. ( 1989). Sendai virus infection of mice with protein malnutrition. Journal of Virology 63, 35413544.Google Scholar
Peters, S., English, K., Laakkonen, J. and Gurnell, J. ( 1994). DNA analysis of Pneumocystis carinii infecting Finnish and English shrews. Journal of Eukaryotic Microbiology 41, S108.Google Scholar
Roths, J. B., Smith, A. L. and Sidman, C. L. ( 1993). Lethal exacerbation of Pneumocystis carinii pneumonia in severe combined immunodeficiency mice after infection by pneumonia virus of mice. Journal of Experimental Medicine 177, 11931198.CrossRefGoogle Scholar
Sandvik, T., Tryland, M., Hansen, H., Mehl, R., Moens, U., Olsvik, Ø. and Traavik, T. ( 1998). Naturally occurring orthopoxviruses: potential for recombination with vaccine vectors. Journal of Clinical Microbiology 36, 25422547.Google Scholar
Sheldon, B. C. and Verhulst, S. ( 1996). Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends in Ecology and Evolution 11, 317321.CrossRefGoogle Scholar
Shellam, G. R. ( 1994). The potential of murine cytomegalovirus as a viral vector for immunocontraception. Reproduction, Fertility and Development 6, 401409.CrossRefGoogle Scholar
Singleton, G. R., Smith, A. L., Shellam, G. R., Fitzgerald, N. and Müller, W. J. ( 1993). Prevalence of viral antibodies and helminths in field populations of house mice (Mus musculus) in southeastern Australia. Epidemiology and Infection 110, 399417.CrossRefGoogle Scholar
Sukura, A., Laakkonen, J. and Rudbäck, E. ( 1997). Occurrence of Pneumocystis carinii in canine distemper. Acta Veterinaria Scandinavica 38, 201205.Google Scholar
Teo, H. K., Price, P. and Papadimitriou, J. M. ( 1991). The effects of protein malnutrition on the pathogenesis of murine cytomegalovirus disease. International Journal of Experimental Pathology 72, 6782.Google Scholar
Tryland, M., Sandvik, T., Mehl, R., Bennett, M., Traavik, T. and Olsvik, O. ( 1998). Serosurvey for orthopoxviruses in rodents and shrews from Norway. Journal of Wildlife Diseases 34, 240250.CrossRefGoogle Scholar
Vapalahti, O., Mustonen, J., Lundqvist, Å., Henttonen, H., Plyusnin, A. and Vaheri, A. ( 2003). Hantavirus infections in Europe. Lancet Infectious Diseases 3, 653661.CrossRefGoogle Scholar