Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:37:49.377Z Has data issue: false hasContentIssue false

Hammondia isolated from dogs and foxes are genetically distinct

Published online by Cambridge University Press:  27 September 2005

J. ABEL
Affiliation:
Department of Cell and Molecular Biology, University of Technology, Sydney, Westbourne Street, Gore Hill, NSW 2065, Australia
G. SCHARES
Affiliation:
Institute of Epidemiology, Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health, Seestrasse 55, 16868 Wusterhausen, Germany
K. ORZESZKO
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
R. B. GASSER
Affiliation:
Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia Biotechnology Research Institute, Macquarie University, North Ryde, NSW 2109, Australia
J. T. ELLIS
Affiliation:
Department of Cell and Molecular Biology, University of Technology, Sydney, Westbourne Street, Gore Hill, NSW 2065, Australia

Abstract

Hammondia heydorni is regarded as a protozoan parasite that uses canids, e.g. dogs and foxes, as definitive hosts, but clinical signs of infection are rare. This study therefore took advantage of the opportunity to study an oocyst population from the faeces of a dog suffering from intermittent bouts of diarrhoea. Oocysts from the naturally infected dog were shown to be H. heydorni by using the polymerase chain reaction combined with DNA sequencing as a diagnostic tool.The nucleotide sequence data reported in this paper are available from GenBank under the following Accession numbers DQ183058, DQ183059 and DQ022687. A comparison of the first internal transcribed spacer (ITS1) sequence of ribosomal DNA obtained with those from other dog and fox oocysts, previously regarded as H. heydorni, showed these oocysts contained identical ITS1 sequences. However, the oocyst DNA from the fox and dog differed by the presence/absence of a 9 bp insertion/deletion within intron 1 of the alpha tubulin gene, and this difference was conserved across a number of different oocyst populations from the 2 species of host. A PCR assay was established that takes advantage of this insertion/deletion and is able to differentiate between the 2 oocyst populations. This study therefore provides evidence that H. heydorni oocysts from dogs and foxes represent 2 distinct genetic lineages that can be differentiated using a PCR, which targets the alpha tubulin locus.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blagburn, B. L., Lindsay, D. S., Swango, L. J., Pidgeon, G. L. and Braund, K. G. ( 1988). Further characterization of the biology of Hammondia heydorni. Veterinary Parasitology 27, 193198.CrossRefGoogle Scholar
Buxton, D., Maley, S. W., Wright, S., Thomson, K. M., Rae, A. G. and Innes, E. A. ( 1998). The pathogenesis of experimental neosporosis in pregnant sheep. Journal of Comparative Patholology 118, 267279.CrossRefGoogle Scholar
Dubey, J. P. and Fayer, R. ( 1976). Development of Isospora bigemina in dogs and other mammals. Parasitology 73, 371380.CrossRefGoogle Scholar
Dubey, J. P., Barr, B. C., Barta, J. R., Bjerkås, I., Björkman, C., Blagburn, B. L., Bowman, D. D., Buxton, D., Ellis, J. T., Gottstein, B., Hemphill, A., Hill, D. E., Howe, D. K., Jenkins, M. C., Kobayashi, Y., Koudela, B., Marsh, A. E., Mattsson, J. G., McAllister, M. M., Modry`, D., Omata, Y., Sibley, L. D., Speer, C. A., Trees, A. J., Uggla, A., Upton, S. J., Williams, D. J. L. and Lindsay, D. S. ( 2002 a). Redescription of Neospora caninum and its differentiation from related coccidia. International Journal for Parasitology 32, 929946.Google Scholar
Dubey, J. P., Hill, D. E., Lindsay, D. S., Jenkins, M. C., Uggla, A. and Speer, C. A. ( 2002 b). Neospora caninum and Hammondia heydorni are separate species/organisms. Trends in Parasitology 18, 6669.Google Scholar
Ellis, J. ( 1998). Polymerase chain reaction approaches for the detection of Neospora caninum and Toxoplasma gondii. International Journal for Parasitology 28, 10531060.CrossRefGoogle Scholar
Ellis, J. T., McMillan, D., Ryce, C., Payne, S., Atkinson, R. and Harper, P. A. W. ( 1999 a). Development of a single tube nested polymerase chain reaction assay for the detection of Neospora caninum DNA. International Journal for Parasitology 29, 15891596.Google Scholar
Ellis, J. T., Morrison, D. A., Liddell, S., Jenkins, M. C., Mohammed, O. B., Ryce, C. and Dubey, J. P. ( 1999 b). The genus Hammondia is paraphyletic. Parasitology 118, 357362.Google Scholar
Ellis, J. T. and Pomroy, W. E. ( 2003). Hammondia heydorni oocysts in the faeces of a greyhound in New Zealand. New Zealand Veterinary Journal 51, 3839.CrossRefGoogle Scholar
Fayer, R. ( 1974). Development of Sarcocystis fusiformis in the small intestines of the dog. Journal of Parasitology 60, 660665.CrossRefGoogle Scholar
Heydorn, A. O. ( 1973). Zum Lebenszyklus der kleinen Form von Isospora bigemina des Hundes. Rind und Hund als mögliche Zwischenwirte. Berliner und Münchner Tierärztliche Wochenzeitschrift 86, 323329.Google Scholar
Heydorn, A. O. and Mehlhorn, H. ( 2002). Neospora caninum is an invalid species name: an evaluation of facts and statements. Parasitology Research 88, 175184.CrossRefGoogle Scholar
Holmdahl, O. J. M. and Mattsson, J. G. ( 1996). Rapid and sensitive identification of Neospora caninum by in vitro amplification of the internal transcribed spacer 1. Parasitology 112, 177182.CrossRefGoogle Scholar
Lindquist, H. D., Bennett, J. W., Hester, J. D., Ware, M. W., Dubey, J. P. and Everson, W. V. ( 2003). Autofluorescence of Toxoplasma gondii and related coccidian oocysts. Journal of Parasitology 89, 865867.CrossRefGoogle Scholar
Lindsay, D. S., Upton, S. J. and Dubey, J. P. ( 1999). A structural study of the Neospora caninum oocyst. International Journal for Parasitology 29, 15211523.CrossRefGoogle Scholar
McAllister, M. M., Dubey, J. P., Lindsay, D. S., Jolley, W. R., Wills, R. A. and McGuire, A. M. ( 1998). Dogs are definitive hosts of Neospora caninum. International Journal for Parasitology 28, 473478.Google Scholar
Mehlhorn, H. and Heydorn, A. O. ( 2000). Neospora caninum: is it really different from Hammondia heydorni or is it a strain of Toxoplasma gondii? An opinion. Parasitology Research 86, 169178.CrossRefGoogle Scholar
Mohammed, O. B., Davies, A., Hussein, H. S., Daszak, P. and Ellis, J. T. ( 2003). Hammondia heydorni from the Arabian Mountain Gazelle and Red Fox in Saudi Arabia. Journal of Parasitology 89, 535539.CrossRefGoogle Scholar
Müller, N., Sager, H., Hemphill, A., Mehlhorn, H., Heydorn, A. O. and Gottstein, B. ( 2001). Comparative molecular investigation of Nc5-PCR amplicons from Neospora caninum NC-1 and Hammondia heydorni-Berlin-1996. Parasitology Research 87, 883885.Google Scholar
Payne, S. and Ellis, J. T. ( 1996). Detection of Neospora caninum DNA by the polymerase chain reaction. International Journal for Parasitology 26, 347351.CrossRefGoogle Scholar
Schares, G., Heydorn, A. O., Cüppers, A., Mehlhorn, H., Geue, L., Peters, M. and Conraths, F. J. ( 2002). In contrast to dogs, red foxes (Vulpes vulpes) did not shed Neospora caninum upon feeding intermediate host tissues. Parasitology Research 88, 4452.CrossRefGoogle Scholar
Schares, G., Meyer, J., Bärwald, A., Conraths, F. J., Riebe, R., Bohne, W., Rohn, K. and Peters, M. ( 2003). A Hammondia-like parasite from the European fox (Vulpes vulpes) forms biologically viable tissue cysts in cell culture. International Journal for Parasitology 33, 229234.CrossRefGoogle Scholar
Schares, G., Pantcher, N., Barutzki, D., Heydorn, A. O., Bauer, C. and Conraths, F. J. ( 2005). Neospora caninum, Hammondia heydorni, Toxoplasma gondiiand Hammondia hammondi oocysts in the faeces of naturally infected dogs in Germany. International Journal for Parasitology (in the Press).Google Scholar
Siverajah, S., Ryce, C., Morrison, D. A. and Ellis, J. T. ( 2002). Characterization of an alpha tubulin gene sequence from Neospora caninum and Hammondia heydorni, and their comparison to homologous genes from Apicomplexa. Parasitology 126, 561569.Google Scholar
Slapeta, J. R., Koudela, B., Votypka, J., Modry`, D., Horejs, R. and Lukes, J. ( 2002 a). Coprodiagnosis of Hammondia heydorni in dogs by PCR based amplification of ITS 1 rRNA: differentiation from morphologically indistinguishable oocysts of Neospora caninum. Veterinary Journal 163, 147154.Google Scholar
Slapeta, J. R., Modry`, D., Kyselova, I., Horejs, R., Lukes, J. and Koudela, B. ( 2002 b). Dog shedding oocysts of Neospora caninum: PCR diagnosis and molecular phylogenetic approach. Veterinary Parasitology 109, 157167.Google Scholar
Sreekumar, C., Hill, D. E., Miska, K. B., Rosenthal, B. M., Vianna, M. C. B., Venturini, L., Basso, W., Gennari, S. M., Lindsay, D. S. and Dubey, J. P. ( 2004). Hammondia heydorni: evidence of genetic diversity among isolates from dogs. Experimental Parasitology 107, 6571.CrossRefGoogle Scholar
Su, C., Evans, D., Cole, R. H., Kissinger, J. C., Ajioka, J. W. and Sibley, L. D. ( 2003). Recent expansion of Toxoplasma through enhanced oral transmission. Science 299, 414416.CrossRefGoogle Scholar
Webb, J. A., Keller, S. L., Southorn, E. P., Armstrong, J., Allen, D. G., Peregrine, A. S. and Dubey, J. P. ( 2005). Cutaneous manifestations of disseminated toxoplasmosis in an immunosuppressed dog. Journal of the American Animal Hospital Association 41, 198202.CrossRefGoogle Scholar