Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T12:08:58.835Z Has data issue: false hasContentIssue false

Genetic variability in cysteine protease genes of Haemonchus contortus

Published online by Cambridge University Press:  06 May 2004

A. RUIZ
Affiliation:
Parasitology Unit, Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
J. M. MOLINA
Affiliation:
Parasitology Unit, Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
A. NJUE
Affiliation:
Institute of Parasitology, McGill University, Ste Anne-de-Bellevue, Quebec H9X 3V9, Canada
R. K. PRICHARD
Affiliation:
Institute of Parasitology, McGill University, Ste Anne-de-Bellevue, Quebec H9X 3V9, Canada

Abstract

To increase the existent genetic variability in cysteine proteases, a polymorphism study was performed in Haemonchus contortus by comparing 2 different strains of the parasite: North American (NA) and Spanish (SP) strains. For this purpose, the polymorphism of 5 previously reported genes (AC-1, AC-3, AC-4, AC-5 and GCP-7) were analysed by PCR–SSCP and sequencing procedures. Based on the SSCP results, a total of 20 different alleles were identified for the 5 loci assessed. Except locus AC-5, all the loci were polymorphic. Loci AC-1, AC-3, AC-4 and GCP-7 showed 5, 8, 2 and 4 alleles, respectively. The allelic frequencies ranged from 0·0070 to 0·8560 and were significantly different between strains. In addition, nucleotide diversity analyses showed a significant variation within and between strains. The variations in the nucleotide sequence of the different alleles were translated in some cases into changes in the amino acid sequence. Evidence of genetic variability in cysteine proteases from two different strains of H. contortus for the same set of genes had not been previously reported.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AUTHIE, E., BOULANGE, A., MUTETI, D., LALMANACH, G., GAUTHIER, F. & MUSOKE, A. J. (2001). Immunisation of cattle with cysteine proteases of Trypanosoma congolense: targetting the disease rather than the parasite. International Journal for Parasitology 31, 14291433.CrossRefGoogle Scholar
BANIA, J., GATTI, E., LELOUARD, H., DAVID, A., CAPPELLO, F., WEBER, E., CAMOSSETO, V. & PIERRE, P. (2003). Human cathepsin S, but not cathepsin L, degrades efficiently MHC class II-associated invariant chain in nonprofessional APCs. Proceedings of the National Academy of Sciences, USA 100, 66646669.CrossRefGoogle Scholar
BARRETT, A. J. (1994). Classification of peptidases. Methods in Enzymology 224, 115.CrossRefGoogle Scholar
BARRETT, A. J. & KIRSCHKE, H. (1981). Cathepsin B, Cathepsin H, and cathepsin L. Methods in Enzymology 80, 535561.CrossRefGoogle Scholar
BARRETT, A. J. & McDONALD, J. K. (1980). Mammalian Proteases: a Glossary and Bibliography, Vol. 1: Endopeptidases. Academic Press, London.
BAZAN, J. F. & FLETTERICK, J. R. (1988). Viral cysteine proteases are homologous to the trysin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences, USA 85, 78727876.CrossRefGoogle Scholar
BEECH, R. N., PRICHARD, R. K. & SCOTT, M. E. (1994). Genetic variability of the beta-tubulin genes in benzimidazole-susceptible and -resistant strains of Haemonchus contortus. Genetics 138, 103110.Google Scholar
BLACKHALL, W. J., LIU, H. Y., XU, M., PRICHARD, R. K. & BEECH, R. N. (1998 a). Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Molecular and Biochemical Parasitology 95, 193201.Google Scholar
BLACKHALL, W. J., POULIOT, J. F., PRICHARD, R. K. & BEECH, R. N. (1998 b). Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Experimental Parasitology 90, 4248.Google Scholar
BLOUIN, M. S., DAME, J. B., TARRANT, C. A. & COURTNEY, C. H. (1992). Unusual population genetics of a parasitic nematode: mtDNA variation within and among populations. Evolution 46, 470476.CrossRefGoogle Scholar
BLOUIN, M. S., YOWELL, C. A., COURTNEY, C. H. & DAME, J. B. (1995). Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141, 10071014.Google Scholar
CAFFREY, C. R., HANSELL, E., LUCAS, K. D., BRINEN, L. S., ALVAREZ HERNANDEZ, A., CHENG, J., GWALTNEY, S. L. 2ND, ROUSH, W. R., STIERHOF, Y. D., BOGYO, M., STEVERDING, D. & McKERROW, J. H. (2001). Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology 118, 6173.CrossRefGoogle Scholar
COOMBS, G. H. & MOTTRAM, J. C. (1997). Parasite proteases and amino acid metabolism: possibilities for chemotherapeutic exploitation. Parasitology (Suppl.) 114, S61S80.Google Scholar
COX, G. N., PRATT, D., HAGEMAN, R. & BOISVENUE, R. J. (1990). Molecular cloning and primary sequence of a cysteine protease expressed by Haemonchus contortus adult worms. Molecular and Biochemical Parasitology 41, 2534.CrossRefGoogle Scholar
DALTON, J. P., McGONIGLE, S., ROLPH, T. P. & ANDREWS, S. J. (1996). Induction of protective immunity in cattle against infection with Fasciola hepatica by vaccination with cathepsin L proteases and with hemoglobin. Infection and Immunity 64, 50665074.Google Scholar
DE LEON, M. P., YANAGI, T., KIKUCHI, M., MU, J., AYAU, O., MATTA, V., PAZ, M., JUÁREZ, S., KANBARA, H., TADA, I. & HIRAYAMA, K. (1998). Characterization of Trypanosoma cruzi by DNA polymorphism of the cruzipain gene detected by single-stranded DNA conformation polymorphism (SSCP) and direct sequencing. International Journal for Parasitology 28, 18671874.CrossRefGoogle Scholar
DIXIT, A. K., YADAV, S. C. & SHARMA, R. L. (2002). 28 kDa Fasciola gigantica cysteine protease in the diagnosis of prepatent ovine fasciolosis. Veterinary Parasitology 109, 233234.CrossRefGoogle Scholar
DU, X., GUO, C., HANSELL, E., DOYLE, P. S., CAFFREY, C. R., HOLLER, T. P., McKERROW, J. H. & COHEN, F. E. (2002). Synthesis and structure-activity relationship study of potent trypanocidal thiosemicarbazone inhibitors of the trypanosomal cysteine protease cruzain. Journal of Medical Chemistry 45, 26952707.CrossRefGoogle Scholar
EAKIN, A. E., MILLS, A. A., HARTH, G., McKERROW, J. H. & CRAIK, C. S. (1992). The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. The Journal of Biological Chemistry 267, 74117420.Google Scholar
GAILLARD, C. & STRAUSS, F. (1990). Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Research 18, 378.CrossRefGoogle Scholar
GELDHOF, P., CLAEREBOUT, E., KNOX, D., VERCAUTEREN, I., LOOSZOVA, A. & VERCRUYSSE, J. (2002). Vaccination of calves against Ostertagia ostertagi with cysteine protease enriched protein fractions. Parasite Immunology 24, 263270.CrossRefGoogle Scholar
GLAZER, A. N. & SMITH, E. L. (1971). Papain and other plant sulfhydryl proteolytic enzymes. In The Enzymes, 3rd Edn ( ed. Boyer, P. D.). Academic Press, New York.CrossRef
GOYAL, P. K. & WAKELIN, D. (1993). Influence of variation in host strain and parasite isolate on inflammatory and antibody responses to Trichinella spiralis. Parasitology 106, 371378.CrossRefGoogle Scholar
GREENHALGH, C. J., BECKHAM, S. A. & NEWTON, S. E. (1999). Galectins from sheep gastrointestinal nematode parasites are highly conserved. Molecular and Biochemical Parasitology 98, 285289.CrossRefGoogle Scholar
HEJMADI, M. V., JAGANNATHAN, S., DELANY, N. S., COLES, G. C. & WOLSTENHOLME, A. J. (2000). L-glutamate binding sites of parasitic nematodes: an association with ivermectin resistance? Parasitology 120, 535545.Google Scholar
HIGGINS, D., THOMPSON, J., GIBSON, T., THOMPSON, J. D., HIGGINS, D. G. & GIBSON, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.Google Scholar
HOEKSTRA, R., CRIADO-FORNELIO, A., FAKKELDIJ, J., BERGMAN, J. & ROOS, M. H. (1997). Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat. Molecular and Biochemical Parasitology 89, 97107.CrossRefGoogle Scholar
HOEKSTRA, R., OTSEN, M., LENSTRA, J. A. & ROOS, M. H. (1999). Characterisation of a polymorphic Tc1-like transposable element of the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology 102, 157166.CrossRefGoogle Scholar
HOEKSTRA, R., OTSEN, M., TIBBEN, J., LENSTRA, J. A. & ROOS, M. H. (2000). Transposon associated markers for the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology 105, 127135.CrossRefGoogle Scholar
HUANG, H., LAYNE, D. R. & KUBISIAK, T. L. (2000). RAPD inheritance and diversity in Pawpaw (Asimina triloba). Journal of the American Society for Horticultural Science 125, 454459.Google Scholar
JASMER, D. P., ROTH, J. & MYLER, P. J. (2001). Cathepsin B-like cysteine proteases and Caenorhabditis elegans homologues dominate gene products expressed in adult Haemonchus contortus intestine. Molecular and Biochemical Parasitology 116, 159169.CrossRefGoogle Scholar
JUKES, T. H. & CANTOR, C. R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism (ed. Munro, H. N.), pp. 21231. Academic Press, New York.CrossRef
KARANU, F. N., RURANGIRWA, F. R., McGUIRE, T. C. & JASMER, D. P. (1993). Haemonchus contortus: identification of proteases with diverse characteristics in adult worm excretory–secretory products. Experimental Parasitology 77, 362371.CrossRefGoogle Scholar
KARANU, F. N., RURANGIRWA, D. P., McGUIRE, T. C. & JASMER, D. P. (1997). Haemonchus contortus: inter- and intrageographic isolate heterogeneity of proteases in adult worm excretory–secretory products. Experimental Parasitology 86, 8991.CrossRefGoogle Scholar
KUKITA, Y., TAHIRA, T., SOMMER, S. S. & HAYASHI, K. (1997). SSCP analysis of long DNA fragments in low pH gel. Human Mutation 10, 400407.3.0.CO;2-3>CrossRefGoogle Scholar
KUMAR DUBEY, V. & JAGANNADHAM, M. V. (2003). Procerain, a stable cysteine protease from the latex of Calotropis procera. Phytochemistry 62, 10571071.CrossRefGoogle Scholar
KUMAR, S., TAMURA, K., JAKOBSEN, I. B. & NEI, M. (2001). MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17, 12441245.CrossRefGoogle Scholar
KWA, M. S., KOOYMAN, F. N., BOERSEMA, J. H. & ROOS, M. H. (1993). Effect of selection for benzimidazole resistance in Haemonchus contortus on beta-tubulin isotype 1 and isotype 2 genes. Biochemical and Biophysical Research Communications 191, 413419.CrossRefGoogle Scholar
LARSON, S., JAMESON, R., ETNIER, M., FLEMING, M. & BENTZEN, P. (2002). Loss of genetic diversity in sea otters (Enhydra lutris) associated with the fur trade of the 18th and 19th centuries. Molecular Ecology 11, 18991903.CrossRefGoogle Scholar
LEWIS, P. O. (1994). GeneStat-PC, v. 3.3. N. C. State University of Raleigh, North Carolina.
LI, Z., CHEN, X., DAVIDSON, E., ZWANG, O., MENDIS, C., RING, C. S., ROUSH, W. R., FEGLEY, G., LI, R., ROSENTHAL, P. J.et al. (1994). Anti-malarial drug development using models of enzyme structure. Chemistry and Biology 1, 3137.CrossRefGoogle Scholar
LOUKAS, A., DOWD, A. J., PROCIV, P. & BRINDLEY, P. J. (2000). Purification of a diagnostic, secreted cysteine protease-like protein from the hookworm Ancylostoma caninum. Parasitology International 49, 327333.CrossRefGoogle Scholar
McKERROW, J. H. (1989). Parasite proteases. Experimental Parasitology 68, 111115.CrossRefGoogle Scholar
MENDOZA-LEON, A., LUIS, L. & MARTINEZ, C. (2001). The beta-tubulin gene region as a molecular marker to distinguish Leishmania parasites. Methods in Molecular Biology 79, 6183.Google Scholar
MORIHARA, K. (1974). Comparative specificity of microbial proteases. Advances in Enzymology 41, 179243.Google Scholar
NA, B. K., LEE, H. J., CHO, S. H., LEE, H. W., CHO, J. H., KHO, W. G., LEE, J. S., LEE, J. S., SONG, K. J., PARK, P. H., SONG, C. Y. & KIM, T. S. (2002). Expression of cysteine protease of Clonorchis sinensis and its use in serodiagnosis of clonorchiasis. Journal of Parasitology 88, 10001006.CrossRefGoogle Scholar
NEI, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583590.Google Scholar
NEI, M. (1986). Definition and estimation of fixation indices. Evolution 40, 643645.CrossRefGoogle Scholar
NESTERENKO, M. V., TILLEY, M. & UPTON, S. J. (1995). A metallo-dependent cysteine protease of Cryptosporidium parvum associated with the surface of sporozoites. Microbios 83, 7788.Google Scholar
NEYRA, V., CHAVARRY, E. & ESPINOZA, J. R. (2002). Cysteine proteases Fas1 and Fas2 are diagnostic markers for Fasciola hepatica infection in alpacas (Lama pacos). Veterinary Parasitology 105, 2132.CrossRefGoogle Scholar
NORTH, M. J. (1982). Comparative biochemistry of the proteases of eukaryotic microorganisms. Microbiological Research 46, 308340.Google Scholar
OTSEN, M., PLAS, M. E., LENSTRA, J. A., ROOS, M. H. & HOEKSTRA, R. (2000). Microsatellite diversity of isolates of the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology 110, 6977.CrossRefGoogle Scholar
PRATT, D., ARMES, L. G., HAGEMAN, R., REYNOLDS, V., BOISVENUE, R. J. & COX, G. N. (1992). Cloning and sequence comparisons of four distinct cysteine proteases expressed by Haemonchus contortus adult worms. Molecular and Biochemical Parasitology 51, 209218.CrossRefGoogle Scholar
PRATT, D., COX, G. N., MILHAUSEN, M. J. & BOISVENUE, R. J. (1990). A developmentally regulated cysteine protease gene family in Haemonchus contortus. Molecular and Biochemical Parasitology 43, 181192.CrossRefGoogle Scholar
RAWLINGS, N. D. & BARRETT, A. J. (1993). Evolutionary families of peptidases. The Biochemical Journal 290, 205218.CrossRefGoogle Scholar
READ, A. F. & TAYLOR, L. H. (2001). The ecology of genetically diverse infections. Science 292, 10991102.CrossRefGoogle Scholar
REHMAN, A. & JASMER, D. P. (1998). A tissue specific approach for analysis of membrane and secreted protein antigens from Haemonchus contortus gut and its application to diverse nematode species. Molecular and Biochemical Parasitology 97, 5568.CrossRefGoogle Scholar
ROSENTHAL, P. J., SIJWALI, P. S., SINGH, A. & SHENAI, B. R. (2002). Cysteine proteases of malaria parasites: targets for chemotherapy. Current Pharmaceutical Design 8, 16591672.CrossRefGoogle Scholar
ROZAS, J. & ROZAS, R. (1999). DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174175.CrossRefGoogle Scholar
SAITOU, N. & NEI, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
SAJID, M. & McKERROW, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121.CrossRefGoogle Scholar
SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
SANGSTER, N. C., BANNAN, S. C., WEISS, A. S., NULF, S. C., KLEIN, R. D. & GEARY, T. G. (1999). Haemonchus contortus: sequence heterogeneity of internucleotide binding domains from P-glycoproteins. Experimental Parasitology 91, 250257.CrossRefGoogle Scholar
SKUCE, P. J., REDMOND, D. L., LIDDELL, S., STEWART, E. M., NEWLANDS, G. F. J., REDMOND, D. L., SKUCE, P. J., KNOX, D. P. & SMITH, W. D. (1999). Molecular cloning and characterization of gut-derived cysteine proteases associated with a host protective extract from Haemonchus contortus. Parasitology 119, 405412.CrossRefGoogle Scholar
SOKAL, R. R. & ROHLF, J. F. (1981). Biometry. Freeman & Co., New York.
SVENSSON, M. D., SCARAMUZZINO, D. A., SJOBRING, U., OLSEN, A., FRANK, C. & BESSEN, D. E. (2000). Role for a secreted cysteine protease in the establishment of host tissue tropism by group A streptococci. Molecular Microbiology 38, 242253.CrossRefGoogle Scholar
TORT, J., BRINDLEY, P. J., KNOX, D., WOLFE, K. H. & DALTON, J. P. (1999). Proteases and associated genes of parasitic helminths. Advances in Parasitology 43, 161266.CrossRefGoogle Scholar
WAKELIN, D., FARIAS, S. E. & BRADLEY, J. E. (2002). Variation and immunity to intestinal worms. Parasitology 125 (Suppl.), S39S50.CrossRefGoogle Scholar
WATKINS, A. R. & FERNANDO, M. A. (1984). Arrested development of the rabbit stomach worm Obeliscoides cuniculi: manipulations of the ability to arrest through processes of selection. International Journal for Parasitology 14, 559570.CrossRefGoogle Scholar
WOOTTON, J. C., FENG, X., FERDIG, M. T., COOPER, R. A., MU, J., BARUCH, D. I., MAGILL, A. J. & SU, X. Z. (2002). Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature, London 418, 320323.CrossRefGoogle Scholar
ZHU, X., SPRATT, D. M., BEVERIDGE, I., HAYCOCK, P. & GASSER, R. B. (2000). Mitochondrial DNA polymorphism within and among species of Capillaria sensu lato from Australian marsupials and rodents. International Journal for Parasitology 30, 933938.CrossRefGoogle Scholar
ZIEBUHR, J., BAYER, S., COWLEY, J. A. & GORBALENYA, A. E. (2003). The 3C-like protease of an invertebrate nidovirus links coronavirus and potyvirus homologs. Journal of Virology 77, 14151426.CrossRefGoogle Scholar