Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T20:41:51.810Z Has data issue: false hasContentIssue false

Entomopathogenic bacteria Photorhabdus luminescens as drug source against Leishmania amazonensis

Published online by Cambridge University Press:  21 November 2017

Ana Maria Antonello
Affiliation:
Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Sarmento Leite 500 – 90050-170, Porto Alegre, RS, Brazil Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite 245 – 90050-170, Porto Alegre, RS, Brazil
Thaís Sartori
Affiliation:
Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Sarmento Leite 500 – 90050-170, Porto Alegre, RS, Brazil Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite 245 – 90050-170, Porto Alegre, RS, Brazil
Ana Paula Folmer Correa
Affiliation:
Departamento de Ciência dos Alimentos, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
Adriano Brandelli
Affiliation:
Departamento de Ciência dos Alimentos, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
Ralf Heermann
Affiliation:
Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany
Luiz Carlos Rodrigues Júnior
Affiliation:
Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite 245 – 90050-170, Porto Alegre, RS, Brazil
Alessandra Peres
Affiliation:
Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite 245 – 90050-170, Porto Alegre, RS, Brazil Programa de Pós-Graduação em Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite 245 – 90050-170, Porto Alegre, RS, Brazil
Pedro Roosevelt Torres Romão*
Affiliation:
Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite 245 – 90050-170, Porto Alegre, RS, Brazil Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite 245 – 90050-170, Porto Alegre, RS, Brazil Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite 245 – 90050-170, Porto Alegre, RS, Brazil
Onilda Santos Da Silva*
Affiliation:
Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Sarmento Leite 500 – 90050-170, Porto Alegre, RS, Brazil
*
Author for correspondence: Pedro Roosevelt Torres Romão and Onilda Santos da Silva, E-mail: pedror@ufcspa.edu.br and onilda.silva@ufrgs.br
Author for correspondence: Pedro Roosevelt Torres Romão and Onilda Santos da Silva, E-mail: pedror@ufcspa.edu.br and onilda.silva@ufrgs.br

Abstract

Leishmaniasis is a widely spread and zoonotic disease with serious problems as low effectiveness of drugs, emergence of parasite resistance and severe adverse reactions. In recent years, considerable attention has been given to secondary metabolites produced by Photorhabdus luminescens, an entomopathogenic bacterium. Here, we assessed the leishmanicidal activity of P. luminescens culture fluids. Initially, promastigotes of Leishmania amazonensis were incubated with cell free conditioned medium of P. luminescens and parasite survival was monitored. Different pre-treatments of the conditioned medium revealed that the leishmanicidal activity is due to a secreted peptide smaller than 3 kDa. The Photorhabdus-derived leishmanicidal toxin (PLT) was enriched from conditioned medium and its effect on mitochondrial membrane potential of promastigotes, was determined. Moreover, the biological activity of PLT against amastigotes was evaluated. PLT inhibited the parasite growth and showed significant leishmanicidal activity against promastigote and amastigotes of L. amazonensis. PLT also caused mitochondrial dysfunction in parasites, but low toxicity to mammalian cell and human erythrocytes. Moreover, the anti-amastigote activity was independent of nitric oxide production. In summary, our results highlight that P. luminescens secretes Leishmania-toxic peptide(s) that are promising novel drugs for therapy against leishmaniasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bizani, D and Brandelli, A (2002) Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. Journal of Applied Microbiology 93, 512519.CrossRefGoogle Scholar
Bode, E, Brachmann, AO, Kegler, C, Simsek, R, Dauth, C, Zhou, Q, Kaiser, M, Klemmt, P and Bode, HB (2015) Simple ‘on-demand’ production of bioactive natural products. Chembiochem 16, 11151119.CrossRefGoogle ScholarPubMed
Bode, HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology 13, 224230.CrossRefGoogle ScholarPubMed
Brachmann, AO and Bode, HB (2013) Identification and bioanalysis of natural products from insect symbionts and pathogens. In Vilcinskas, A (ed.). Yellow Biotechnology I-Insect Biotechnologie in Drug Discovery and Preclinical Research, vol. 135. Berlin, Heidelberg: Springer, pp. 123155.Google Scholar
Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Cai, X, Nowak, S, Wesche, F, Bischoff, I, Kaiser, M, Fürst, R and Bode, HB (2017) Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nature Chemistry 9, 379386. http://www.nature.com/nchem/journal/v9/n4/abs/nchem.2671.html#supplementary-information.CrossRefGoogle ScholarPubMed
Carvalho, EM, Barral, A, Costa, JML, Bittencourt, A and Marsden, P (1994) Clinical and immunopathological aspects of disseminated cutaneous leishmaniasis. Acta Tropica 56, 315325.CrossRefGoogle ScholarPubMed
Castellani, A and Chalmers, AJ (1919) Manual of Tropical Medicine. 3rd edn. New York: WilIiam Wood, 2436 pp.Google Scholar
Challinor, VL and Bode, HB (2015) Bioactive natural products from novel microbial sources. Annals of the New York Academy of Sciences 1354, 8297.CrossRefGoogle ScholarPubMed
Chappuis, F, Sundar, S, Hailu, A, Ghalib, H, Rijal, S, Peeling, RW, Alvar, J and Boelaert, M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews Microbiology 5, 873882.CrossRefGoogle ScholarPubMed
Chaston, JM, Suen, G, Tucker, SL, Andersen, AW, Bhasin, A, Bode, E, Bode, HB, Brachmann, AO, Cowles, CE, Cowles, KN, Darby, C, de Leon, L, Drace, K, Du, Z, Givaudan, A, Herbert Tran, EE, Jewell, KA, Knack, JJ, Krasomil-Osterfeld, KC, Kukor, R, Lanois, A, Latreille, P, Leimgruber, NK, Lipke, CM, Liu, R, Lu, X, Martens, EC, Marri, PR, Medigue, C, Menard, ML, Miller, NM, Morales-Soto, N, Norton, S, Ogier, JC, Orchard, SS, Park, D, Park, Y, Qurollo, BA, Sugar, DR, Richards, GR, Rouy, Z, Slominski, B, Slominski, K, Snyder, H, Tjaden, BC, van der Hoeven, R, Welch, RD, Wheeler, C, Xiang, B, Barbazuk, B, Gaudriault, S, Goodner, B, Slater, SC, Forst, S, Goldman, BS and Goodrich-Blair, H (2011) The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS ONE 6, e27909.CrossRefGoogle ScholarPubMed
Cragg, GM and Newman, DJ (2013) Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta 1830, 36703695.CrossRefGoogle ScholarPubMed
Dagnino, AP, Barros, FMCd, Ccana-Ccapatinta, GV, Prophiro, JS, Poser, GLv and Romão, PRT (2015) Leishmanicidal activity of lipophilic extracts of some Hypericum species. Phytomedicine 22, 7176.CrossRefGoogle ScholarPubMed
da Silva, OS, Prado, GR, da Silva, JL, Silva, CE, da Costa, M and Heermann, R (2013) Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitology Research 112, 28912896.CrossRefGoogle ScholarPubMed
da Silva, JL, Undurraga Schwalm, F, Eugenio Silva, C, da Costa, M, Heermann, R and Santos da Silva, O (2017) Larvicidal and growth-inhibitory activity of entomopathogenic bacteria culture fluids against Aedes aegypti (Diptera: Culicidae). Journal of Economic Entomology 110, 378385.Google Scholar
Degrossoli, A, Arrais-Silva, WW, Colhone, MC, Gadelha, FR, Joazeiro, PP and Giorgio, S (2011) The influence of low oxygen on macrophage response to Leishmania infection. Scandinavian Journal of Immunology 74, 165175.CrossRefGoogle ScholarPubMed
de Souza, W and Rodrigues, JC (2009) Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdisciplinary Perspectives on Infectious Diseases 2009, 642502.CrossRefGoogle ScholarPubMed
Donia, MS, Ravel, J and Schmidt, EW (2008) A global assembly line for cyanobactins. Nature Chemical Biology 4, 341343.CrossRefGoogle ScholarPubMed
El-Sadawy, HA, Forst, S, Abouelhag, HA, Ahmed, AM, Alajmi, RA and Ayaad, TH (2016) Molecular and phenotypic characterization of two bacteria, Photorhabdus luminescens subsp. akhurstii HRM1 and HS1 isolated from two entomopathogenic nematodes, Heterorhabditis indica RM1 and Heterorhabditis sp. S1. Pakistan Journal of Zoology 48, 5158.Google Scholar
Ferlini, C and Scambia, G (2007) Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange. Nature Protocols 2, 31113114.CrossRefGoogle ScholarPubMed
Fischer-Le Saux, M, Viallard, V, Brunel, B, Normand, P and Boemare, NE (1999) Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. International Journal of Systematic Microbiology 49(Pt 4), 16451656.CrossRefGoogle Scholar
Fonseca, SG, Romao, PR, Figueiredo, F, Morais, RH, Lima, HC, Ferreira, SH and Cunha, FQ (2003) TNF-alpha mediates the induction of nitric oxide synthase in macrophages but not in neutrophils in experimental cutaneous leishmaniasis. European Journal of Immunology 33, 22972306.CrossRefGoogle Scholar
Franca-Costa, J, Wanderley, JL, Deolindo, P, Zarattini, JB, Costa, J, Soong, L, Barcinski, MA, Barral, A and Borges, VM (2012) Exposure of phosphatidylserine on Leishmania amazonensis isolates is associated with diffuse cutaneous leishmaniasis and parasite infectivity. PLoS ONE 7, e36595.CrossRefGoogle ScholarPubMed
Garcia, FP, Henrique da Silva Rodrigues, J, Din, ZU, Rodrigues-Filho, E, Ueda-Nakamura, T, Auzely-Velty, R and Nakamura, CV (2017) A3K2A3-induced apoptotic cell death of Leishmania amazonensis occurs through caspase- and ATP-dependent mitochondrial dysfunction. Apoptosis 22, 5771.CrossRefGoogle ScholarPubMed
Gauthier, C, Legault, J, Girard-Lalancette, K, Mshvildadze, V and Pichette, A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorganic & Medicinal Chemistry 17, 20022008.CrossRefGoogle ScholarPubMed
Giorgio, S, Linares, E, de Capurro, ML, de Bianchi, AG and Augusto, O (1996) Formation of nitrosyl hemoglobin and nitrotyrosine during murine leishmaniasis. Photochemistry Photobiology 63, 750754.CrossRefGoogle ScholarPubMed
Herbert, EE and Goodrich-Blair, H (2007) Friend and foe: the two faces of Xenorhabdus nematophila. Nature Reviews Microbiology 5, 634646.CrossRefGoogle ScholarPubMed
Houghton, AM, Hartzell, WO, Robbins, CS, Gomis-Ruth, FX and Shapiro, SD (2009) Macrophage elastase kills bacteria within murine macrophages. Nature 460, 637641.CrossRefGoogle ScholarPubMed
Kondo, S, Mizuki, E, Akao, T and Ohba, M (2002) Antitrichomonal strains of Bacillus thuringiensis. Parasitology Research 88, 10901092.CrossRefGoogle ScholarPubMed
Kronenwerth, M, Brachmann, AO, Kaiser, M and Bode, HB (2014) Bioactive derivatives of isopropylstilbene from mutasynthesis and chemical synthesis. Chembiochem 15, 26892691.CrossRefGoogle ScholarPubMed
Lee, N, Bertholet, S, Debrabant, A, Muller, J, Duncan, R and Nakhasi, HL (2002) Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differentiation 9, 5364.CrossRefGoogle ScholarPubMed
Maruyama, C, Toyoda, J, Kato, Y, Izumikawa, M, Takagi, M, Shin-ya, K, Katano, H, Utagawa, T and Hamano, Y (2012) A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. Nature Chemical Biology 8, 791797.CrossRefGoogle ScholarPubMed
Nielsen-LeRoux, C, Gaudriault, S, Ramarao, N, Lereclus, D and Givaudan, A (2012) How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Current Opinion in Microbiology 15, 220231.CrossRefGoogle ScholarPubMed
Novais, FO, Nguyen, BT, Beiting, DP, Carvalho, LP, Glennie, ND, Passos, S, Carvalho, EM and Scott, P (2014) Human classical monocytes control the intracellular stage of Leishmania braziliensis by reactive oxygen species. Journal of Infectious Diseases 209, 12881296.CrossRefGoogle ScholarPubMed
Oh, S, Kim, S, Kong, S, Yang, G, Lee, N, Han, D, Goo, J, Siqueira-Neto, JL, Freitas-Junior, LH and Song, R (2014) Synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-a]benzimidazole derivatives against Leishmania donovani and Trypanosoma cruzi. European Journal of Medicinal Chemistry 84, 395403.CrossRefGoogle ScholarPubMed
Orozco, RA, Molnar, I, Bode, H and Stock, SP (2016) Bioprospecting for secondary metabolites in the entomopathogenic bacterium Photorhabdus luminescens subsp. sonorensis. Journal of Invertebrate Pathology 141, 4552.CrossRefGoogle ScholarPubMed
Rodrigues, JHdS, Ueda-Nakamura, T, Corrêa, AG, Sangi, DP and Nakamura, CV (2014) A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi. PLoS ONE 9, e85706.CrossRefGoogle ScholarPubMed
Romao, PR, Fonseca, SG, Hothersall, JS, Noronha-Dutra, AA, Ferreira, SH and Cunha, FQ (1999) Glutathione protects macrophages and Leishmania major against nitric oxide-mediated cytotoxicity. Parasitology 118, 559566.CrossRefGoogle ScholarPubMed
Romao, PR, Tovar, J, Fonseca, SG, Moraes, RH, Cruz, AK, Hothersall, JS, Noronha-Dutra, AA, Ferreira, SH and Cunha, FQ (2006) Glutathione and the redox control system trypanothione/trypanothione reductase are involved in the protection of Leishmania spp. against nitrosothiol-induced cytotoxicity. Brazilian Journal of Medical and Biological Research 39, 355363.CrossRefGoogle ScholarPubMed
Sacks, D and Kamhawi, S (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annual Review of Microbiology 55, 453483.CrossRefGoogle ScholarPubMed
Sen, R, Bandyopadhyay, S, Dutta, A, Mandal, G, Ganguly, S, Saha, P and Chatterjee, M (2007) Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. Journal of Medical Microbiology 56, 12131218.CrossRefGoogle ScholarPubMed
Shi, D, An, R, Zhang, W, Zhang, G and Yu, Z (2017) Stilbene derivatives from photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi. Journal of Agricultural and Food Chemistry 65, 6065.CrossRefGoogle ScholarPubMed
Shrestha, YK and Lee, KY (2012) Oral toxicity of Photorhabdus culture media on gene expression of the adult sweetpotato whitefly, Bemisia tabaci. Journal of Invertebrate Pathology 109, 9196.CrossRefGoogle ScholarPubMed
Sieber, SA and Marahiel, MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chemical Reviews 105, 715738.CrossRefGoogle ScholarPubMed
Sundar, S (2001) Drug resistance in Indian visceral leishmaniasis. Tropical Medicine & International Health 6, 849854.CrossRefGoogle ScholarPubMed
Tobias, NJ, Mishra, B, Gupta, DK, Sharma, R, Thines, M, Stinear, TP and Bode, HB (2016) Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 17, 537.CrossRefGoogle ScholarPubMed
Waterfield, NR, Ciche, T and Clarke, D (2009) Photorhabdus and a host of hosts. Annual Review of Microbiology 63, 557574.CrossRefGoogle Scholar
Weiss, G and Schaible, UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunological Reviews 264, 182203.CrossRefGoogle ScholarPubMed
World Health Organization (2010) Control of the Leishmaniasis: Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases. Geneva, Switzerland: World Health Organization.Google Scholar
Wu, G, Zhao, Z, Liu, C and Qiu, L (2014) Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. Journal of Economic Entomology 107, 559569.CrossRefGoogle ScholarPubMed
Xu, Z, Yao, B, Sun, M and Yu, Z (2004) Protection of mice infected with Plasmodium berghei by Bacillus thuringiensis crystal proteins. Parasitology Research 92, 5357.CrossRefGoogle ScholarPubMed
Yamanaka, K, Maruyama, C, Takagi, H and Hamano, Y (2008) Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nature Chemical Biology 4, 766772.CrossRefGoogle ScholarPubMed
Zhou, Q, Grundmann, F, Kaiser, M, Schiell, M, Gaudriault, S, Batzer, A, Kurz, M and Bode, HB (2013) Structure and biosynthesis of xenoamicins from entomopathogenic Xenorhabdus. Chemistry – A European Journal 19, 1677216779.CrossRefGoogle ScholarPubMed