Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:34:43.435Z Has data issue: false hasContentIssue false

The effects of dietary non-starch polysaccharides on Ascaridia galli infection in grower layers

Published online by Cambridge University Press:  23 September 2011

G. DAŞ*
Affiliation:
University of Göttingen, Department of Animal Sciences, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
H. ABEL
Affiliation:
University of Göttingen, Department of Animal Sciences, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
J. HUMBURG
Affiliation:
University of Göttingen, Department of Animal Sciences, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
A. SCHWARZ
Affiliation:
University of Veterinary Medicine Hannover, Clinic for Poultry, Bünteweg 17, 30559, Hannover, Germany
S. RAUTENSCHLEIN
Affiliation:
University of Veterinary Medicine Hannover, Clinic for Poultry, Bünteweg 17, 30559, Hannover, Germany
G. BREVES
Affiliation:
University of Veterinary Medicine Hannover, Institute for Physiology, Bischofsholer Damm 15, 30173, Hannover, Germany
M. GAULY
Affiliation:
University of Göttingen, Department of Animal Sciences, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
*
*Corresponding author: University of Göttingen, Department of Animal Sciences, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany. Tel: +49 551 39 9215. Fax: +49 551 39 5587. E-mail: gdas@gwdg.de

Summary

This study examined whether Ascaridia galli infection can be controlled by dietary non-starch polysaccharides (NSP) in chickens. One-day-old chicks were fed either a basal diet (CON) or CON plus insoluble NSP (I-NSP), or CON plus soluble NSP (S-NSP) for 11 weeks. Three weeks later, birds from half of each feeding group were inoculated with 250 embryonated eggs of A. galli, and slaughtered 8 weeks post-infection to determine worm counts. Both NSP diets, particularly S-NSP, increased prevalence of infection (P<0·05) and worm burden (roughly +50%) of the birds (P<0·001). A. galli infection caused a less efficient (P=0·013) feed utilization for body weight gain (BWG) resulting in lower body weights (P<0·001) irrespective of type of diet consumed. NSP-fed birds, particularly those on I-NSP, consumed more (+8%) feed per unit BWG and showed retarded (P<0·001) BW development compared to CON-fed birds. Intracaecal pH was lowered by S-NSP (P<0·05). Both NSP diets increased the volatile fatty acids pool size in caeca (P<0·001) with S-NSP exerting a greater effect (+46%) than I-NSP (+24%). It is concluded that both NSPs supplemented diets alter gastrointestinal environment in favour of the nematode establishment, and thus have no potential for controlling A. galli infection in chickens.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelqader, A., Gauly, M. and Wollny, C. B. A. (2007). Response of two breeds of chickens to Ascaridia galli infections from two geographic sources. Veterinary Parasitology 145, 176180.CrossRefGoogle ScholarPubMed
Bach Knudsen, K. E. (2001). The nutritional significance of “dietary fibre” analysis. Animal Feed Science and Technology 90, 320.CrossRefGoogle Scholar
Colditz, I. G. (2008). Six costs of immunity to gastrointestinal nematode infections. Parasite Immunology 30, 6370.CrossRefGoogle ScholarPubMed
Daenicke, S., Dusel, G., Jeroch, H. and Kluge, H. (1999). Factors affecting efficiency of NSP-degrading enzymes in rations for pigs and poultry. Agribiological Research 52, 124.Google Scholar
Daenicke, S., Moors, E., Beineke, A. and Gauly, M. (2009). Ascaridia galli infection of pullets and intestinal viscosity: consequences for nutrient retention and gut morphology. British Poultry Science 50, 512520.CrossRefGoogle Scholar
Daş, G., Kaufmann, F., Abel, H. and Gauly, M. (2010). Effect of extra dietary lysine in Ascaridia galli-infected grower layers. Veterinary Parasitology 170, 238243.CrossRefGoogle ScholarPubMed
Daş, G., Abel, H., Humburg, J., Schwarz, A., Rautenschlein, S., Breves, G. and Gauly, M. (2011 b). Non-starch polysaccharides alter interactions between Heterakis gallinarum and Histomonas meleagridis. Veterinary Parasitology 176, 208216.CrossRefGoogle ScholarPubMed
Daş, G., Abel, H., Rautenschlein, S., Humburg, J., Schwarz, A., Breves, G. and Gauly, M. (2011 a). Effects of dietary non-starch polysaccharides on establishment and fecundity of Heterakis gallinarum in grower layers. Veterinary Parasitology 178, 121128.CrossRefGoogle ScholarPubMed
Daş, G., Savaş, T., Kaufmann, F., Idris, A., Abel, H. and Gauly, M. (2011 c). Precision, repeatability and representative ability of faecal egg counts in Heterakis gallinarum infected chickens. Veterinary Parasitology (in the Press, doi: 10.1016/j.vetpar.2011.07.005).CrossRefGoogle ScholarPubMed
Englyst, H. (1989). Classification and measurement of plant polysaccharides. Animal Feed Science and Technology 23, 2742.CrossRefGoogle Scholar
Forbes, J. M. and Shariatmadari, F. (1994). Diet selection by poultry. World's Poultry Science Journal 50, 724.CrossRefGoogle Scholar
Fossum, O., Jansson, D. S., Etterlin, P. E. and Vågsholm, I. (2009). Causes of mortality in laying hens in different housing systems in 2001 to 2004. Acta Veterinaria Scandinavica 51, Artn: 3. doi: 10.1186/1751-0147-51-3.CrossRefGoogle ScholarPubMed
Francesch, M. and Brufau, J. (2004). Nutritional factors affecting excreta/litter moisture and quality. World's Poultry Science Journal 60, 6475.CrossRefGoogle Scholar
FMVO, Futtermittelverordnung (2008). Anlage 4. Shätzgleichungen zur Berechnung des Energiegehaltes von Mischfuttermitteln. URL: http://www.gesetze-im-internet.de/futtmv_1981/anlage_4_76.html (Accessed on 05.05.2011).Google Scholar
Gauly, M., Bauer, C., Mertens, C. and Erhardt, G. (2001). Effect and repeatability of Ascaridia galli egg output in cockerels following a single low dose infection. Veterinary Parasitology 96, 301307.CrossRefGoogle ScholarPubMed
Gauly, M., Bauer, C., Preisinger, R. and Erhardt, G. (2002). Genetic differences of Ascaridia galli egg output in laying hens following a single dose infection. Veterinary Parasitology 103, 99107.CrossRefGoogle ScholarPubMed
Halle, I. (2002). Einfluss einer gestaffelten Supplementierung von Lysin und Methionin während der Aufzucht auf das Wachstum und auf die Leistungsmerkmale der Hennen in der folgenden Legeperiode bei einer gestaffelten Protein- und Energieversorgung. Archiv für Geflügelkunde 66, 6674.Google Scholar
Herd, R. P. and Mcnaught, D. J. (1975). Arrested development and the histotropic phase of Ascaridia galli in the chicken. International Journal for Parasitology 5, 401406.CrossRefGoogle ScholarPubMed
Hurwitz, S., Shamir, N. and Bar, A. (1972 a). Effect of Ascaridia galli on lumen activity of enzymes in the intestine of chicks. Poultry Science 51, 14621463.CrossRefGoogle ScholarPubMed
Hurwitz, S., Shamir, N. and Bar, A. (1972 b). Protein digestion and absorption in the chick: effect of Ascaridia galli. American Journal of Clinical Nutrition 25, 311316.CrossRefGoogle ScholarPubMed
Jørgensen, H., Zhao, X-Q., Knudsen, K. E. B. and Eggum, B. O. (1996). The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. British Journal of Nutrition 75, 379395.CrossRefGoogle ScholarPubMed
Józefiak, D., Rutkowski, A. and Martin, S. A. (2004). Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology 113, 115.CrossRefGoogle Scholar
Juskiewicz, J., Jankowski, J., Zdunczyk, Z., Biedrzycka, E. L. and Koncicki, A. (2005). Performance and microbial status of turkeys fed diets containing different levels of inulin. Archiv für Geflügelkunde, 69, 175180.Google Scholar
Kaps, M. and Lamberson, W. R. (2004). Biostatistics for Animal Science, CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Kaufmann, F., Daş, G., Sohnrey, B. and Gauly, M. (2011). Helminth infections in laying hens kept in free range systems in Germany. Livestock Science (in the Press, doi: 10.1016/j.livsci.2011.05.015).CrossRefGoogle Scholar
Kyriazakis, I. and Houdijk, J. (2006). Immunonutrition: Nutritional control of parasites. Small Ruminant Research 62, 7982.CrossRefGoogle Scholar
MAFF (1986). Manual Veterinary Parasitological Laboratory Techniques, Ministry of Agriculture, Fisheries and Food, Reference Book 418, 3rd edition, HMSO, London.Google Scholar
Marcos-Atxutegi, C., Gandolfi, B., Arangüena, T., Sepúlveda, R., Arévalo, M. and Simón, F. (2009). Antibody and inflammatory responses in laying hens with experimental primary infections of Ascaridia galli. Veterinary Parasitology 161, 6975.CrossRefGoogle ScholarPubMed
Marounek, M., Suchorska, O. and Savka, O. (1999). Effect of substrate and feed antibiotics on in vitro production of volatile fatty acids and methane in cecal contents of chickens. Animal Feed Science and Technology 80, 223230.CrossRefGoogle Scholar
Megazyme (2007). Total Dietary Fibre Assay Procedure. Megazyme International Ireland Ltd., Wicklow, Ireland.Google Scholar
Montagne, L., Pluske, J. R. and Hampson, D. J. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology 108, 95117.CrossRefGoogle Scholar
Naumann, K. and Bassler, R. (1997). Methodenbuch. Die chemische Untersuchung von Futtermitteln. Band III. VDLUFA-Verlag, Darmstadt, Deutschland.Google Scholar
Permin, A., Bisgaard, M., Frandsen, F., Pearman, M., Nansen, P. and Kold, J. (1999). The prevalence of gastrointestinal helminths in different poultry production systems. British Poultry Science 40, 439443.CrossRefGoogle ScholarPubMed
Petkevičius, S., Knudsen, K. E. B., Murrel, K. D. and Wachmann, H. (2003). The effect of inulin and sugar beet fibre on Oesophagostomum dentatum in pigs. Parasitology 127, 6168.CrossRefGoogle ScholarPubMed
Petkevičius, S., Knudsen, K. E. B., Nansen, P., Roepstorff, A., Skjøth, F. and Jensen, K. (1997). The impact of diets varying in carbohydrates resistant to endogenous enzymes and lignin on populations of Ascaris suum and Oesophagostomum dentatum in pigs. Parasitology 114, 555568.Google ScholarPubMed
Petkevičius, S., Knudsen, K. E. B., Nansen, P. and Murrel, K. D. (2001). The effect of dietary carbohydrates with different digestibility on the populations of Oesophagostomum dentatum in the intestinal tract of pigs. Parasitology 123, 315324.CrossRefGoogle ScholarPubMed
Petkevičius, S., Thomsen, L. E., Knudsen, K. E. B., Murrell, K. D., Roepstorff, A. and Boes, J. (2007). The effect of inulin on new and on patent infections of Trichuris suis in growing pigs. Parasitology 134, 121127.CrossRefGoogle ScholarPubMed
Ramadan, H. H. and Abou Znada, N. Y. (1991). Some pathological and biochemical studies on experimental Ascaridiasis in chickens. Nahrung – Food 35, 7184.CrossRefGoogle ScholarPubMed
Rehman, H. U., Vahjen, W., Awad, W. and Zentek, J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition 61, 319335.CrossRefGoogle ScholarPubMed
Rehman, H., Böhm, J. and Zentek, J. (2008 b). Effects of differentially fermentable carbohydrates on the microbial fermentation profile of the gastrointestinal tract. Journal of Animal Physiology and Animal Nutrition 92, 471480.CrossRefGoogle ScholarPubMed
Rehman, H., Hellweg, P., Taras, D. and Zentek, J. (2008 a). Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poultry Science 87, 783789.CrossRefGoogle ScholarPubMed
Riedel, B. B. and Ackert, J. E. (1951). Quantity and source of proteins as factors in the resistance of chickens to Ascarids. Poultry Science 30, 497502.CrossRefGoogle Scholar
SAS Institute Inc. (2010). SAS OnlineDoc® Version 9.1.3, Cary, NC, USA.Google Scholar
Schneeman, B. O. (1999). Fiber, inulin and oligofructose: similarities and differences. Journal of Nutrition 129, 14241427.CrossRefGoogle ScholarPubMed
Schwarz, A., Gauly, M., Abel, H., Daş, G., Humburg, J., Rohn, K., Breves, G. and Rautenschlein, S. (2011). Immunopathogenesis of Ascaridia galli infection in layer chicken. Developmental and Comparative Immunology 35, 774784.CrossRefGoogle ScholarPubMed
Sundrum, A., Schneider, K. and Richter, U. (2005). Possibilities and limitations of protein supply in organic poultry and pig production. Final Project Report EEC 2092/91 (Organic) Revision no. D 4.1 (Part 1), Department of Animal Nutrition and Animal Health, University of Kassel, Witzenhausen, Germany.Google Scholar
Thamsborg, S. M., Roepstorff, A. and Larsen, M. (1999). Integrated and biological control of parasites in organic and conventional production systems. Veterinary Parasitology 84, 169186.CrossRefGoogle ScholarPubMed
Van de Weerd, H. A., Keatinge, R. and Roderick, S. (2009). A review of key health-related welfare issues in organic poultry production. World's Poultry Science Journal 65, 649684.CrossRefGoogle Scholar
Van Der Klis, J. D., Van Voorst, A. and Van Cruyningen, C. (1993). Effect of a soluble polysaccharide (carboxy methyl cellulose) on the physico-chemical conditions in the gastrointestinal tract of broilers. British Poultry Science 34, 971983.CrossRefGoogle ScholarPubMed
Van Krimpen, M. M., Kwakkel, R. P., André, G., Van Der Peet-Schwering, C. M. C., Den Hartog, L. A. and Verstegen, M. W. A. (2007). Effect of nutrient dilution on feed intake, eating time and performance of hens in early lay. British Poultry Science 48, 389398.CrossRefGoogle ScholarPubMed
Van Krimpen, M. M., Kwakkel, R. P., Van Der Peet-Schwering, C. M. C., Den Hartog, L. A. and Verstegen, M. W. A. (2008). Low dietary energy concentration, high nonstarch polysaccharide concentration, and coarse particle sizes of nonstarch polysaccharides affect the behavior of feather-pecking-prone laying hens. Poultry Science 87, 485496.CrossRefGoogle ScholarPubMed
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Walker, T. R. and Farrell, D. J. (1976). Energy and nitrogen metabolism of diseased chickens: interaction of Ascaridia galli infestation and vitamin a status. British Poultry Science 17, 6377.CrossRefGoogle ScholarPubMed
Yazwinski, T. A., Chapman, H. D., Davis, R. B., Letonja, T., Pote, L., Maes, L., Vercruysse, J. and Jacobs, D. E. (2003). World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guidelines for evaluating the effectiveness of anthelmintics in chickens and turkeys. Veterinary Parasitology 116, 159173.CrossRefGoogle Scholar
ZMP, Zentrale Mark- Und Preisberichtstelle – GmbH (2008). Marktbilanz, Eier und Geflügel. Bonn, Germany.Google Scholar