Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T13:54:48.880Z Has data issue: false hasContentIssue false

The effect of larval density on pre-imaginal development in two species of desert fleas

Published online by Cambridge University Press:  12 July 2010

I. S. KHOKHLOVA
Affiliation:
Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
A. HOVHANYAN
Affiliation:
Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel Mitrani Department of Desert Ecology, Institute for Dryland Environmental Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
A. ALLAN DEGEN
Affiliation:
Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
B. R. KRASNOV*
Affiliation:
Mitrani Department of Desert Ecology, Institute for Dryland Environmental Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
*
*Corresponding author: Mitrani Department of Desert Ecology, Institute for Dryland Environmental Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel. Tel: +972 8 6596841. Fax: +972 8 6596772. E-mail: krasnov@bgu.ac.il

Summary

We studied the effect of density of larvae on pre-imaginal development in 2 flea species (Xenopsylla conformis and Xenopsylla ramesis) parasitic on 2 desert rodent species (Dipodillus dasyurus, adult body mass 20 g and Meriones crassus, 80 g). We predicted a decrease in duration of development with an increase in density of larvae. In general, in both flea species, duration of larva-to-pupa development decreased with an increasing larval density. In addition, this stage of development was longer in male fleas and in fleas from parents fed on D. dasyurus. The effect of larval density on larval development was manifested mainly when parent fleas fed on D. dasyurus. Duration of pupation decreased with increasing larval density only in offspring of fleas fed on G. dasyurus. In both fleas, pupation was longer in males. The effect of parent host on duration of pupation was found in X. ramesis only (longer if the host was M. crassus). Resistance of newly emerged fleas to starvation depended mainly on parent host species. Young X. conformis survived longer if their parents fed on D. dasyurus, whereas young X. ramesis survived longer if their parents fed on M. crassus. It was also found that (a) an individual flea that spent more time as a larva also spent more time as a pupa and (b) longer larval development resulted in a shorter time that a newly emerged flea was able to survive when starved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amin, O. M., Liu, J., Li, S.-J., Zhang, Y.-M. and Sun, L.-Z. (1993). Development and longevity of Nosopsyllus laeviceps kuzenkovi (Siphonaptera) from Inner Mongolia under laboratory conditions. Journal of Parasitology 79, 193197.CrossRefGoogle ScholarPubMed
Averill, A. L. and Prokopy, R. J. (1987). Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecology 68, 878886.CrossRefGoogle Scholar
Beaver, R. A. (1974). Intraspecific competition among bark beetle larvae (Coleoptera: Scolytidae). Journal of Animal Ecology 43, 455467.CrossRefGoogle Scholar
Bossard, R. L., Broce, A. B. and Dryden, M. W. (2000). Effects of circadian rhythms and other bioassay factors on cat flea (Pulicidae: Siphonaptera) susceptibility to insecticides. Journal of the Kansas Entomological Society 73, 2129.Google Scholar
Burrack, H. J., Fornell, A. M., Connell, J. H., O'Connell, N. V., Phillips, P. A., Vossen, P. M. and Zalom, F. G. (2009). Intraspecific larval competition in the olive fruit fly (Diptera: Tephritidae). Environmental Entomology 38, 14001410.CrossRefGoogle Scholar
Cotton, M. J. (1970). The reproductive biology of Ctenophthalmus nobilis (Rothschild) (Siphonaptera). Proceedings of the Royal Entomological Society of London 45, 141148.CrossRefGoogle Scholar
Deneubourg, J. L., Grégoire, J.-C. and LeFort, E. (1990). Kinetics of larval gregarious behaviour in the bark beetle Dendroctonus micans (Coleoptera: Scolytidae). Journal of Insect Behavior 3, 169182.CrossRefGoogle Scholar
Gromov, V. S., Krasnov, B. R. and Shenbrot, G. I. (2000). Space use in Wagner's gerbil Gerbillus dasyurus (Wagner, 1842) in the Negev Highlands, Israel. Acta Theriologica 45, 175182.CrossRefGoogle Scholar
Jumean, Z., Gries, R., Unruh, T., Rowland, E. and Gries, G. (2005). Identification of the larval aggregation pheromone of codling moth, Cydia pomonella. Journal of Chemical Ecology 31, 911924.CrossRefGoogle ScholarPubMed
Hartman, M. J., Surfleet, J. A. and Hynes, C. D. (1978). Aggregation pheromone in the larvae of Tipula simplex Doane – mode of action and site of production (Diptera, Tipulidae). Pan-Pacific Entomologist 54, 305310.Google Scholar
Hawlena, H., Abramsky, Z., Krasnov, B. R. and Saltz, D. (2007). Host defence versus intraspecific competition in the regulation of infrapopulations of the flea Xenopsylla conformis on its rodent host Meriones crassus. International Journal for Parasitology 37, 919925.CrossRefGoogle ScholarPubMed
Hawlena, H., Bashary, D., Abramsky, Z., Khokhlova, I. S. and Krasnov, B. R. (2008). Programmed versus stimulus-driven anti-parasitic grooming in a rodent: efficiency, time allocation and age-dependence. Behavioral Ecology 19, 929935.CrossRefGoogle Scholar
Hinkle, N. C., Koehler, P. G. and Kern, W. H. (1991). Hematophagous strategies of the cat flea (Siphonaptera: Pulicidae). Florida Entomologist 74, 377385.CrossRefGoogle Scholar
Hsu, M. H., Hsu, Y. C. and Wu, W. J. (2002). Consumption of flea faeces and eggs by larvae of the cat flea, Ctenocephalides felis. Medical and Veterinary Entomology 16, 445447.CrossRefGoogle ScholarPubMed
Hudson, B. W. and Prince, F. M. (1958). A method for large-scale rearing of the cat flea, Ctenocephalides felis felis (Bouche). Bulletin of the World Health Organization 19, 11261129.Google ScholarPubMed
Kelly, D. W. and Thompson, C. E. (2000). Epidemiology and optimal foraging: modelling the ideal free distribution of insect vectors. Parasitology 120, 319327.CrossRefGoogle ScholarPubMed
Kern, W. H., Richman, D. L., Koehler, P. G. and Brenner, R. J. (1999). Outdoor survival and development of immature cat fleas (Siphonaptera: Pulicidae) in Florida. Journal of Medical Entomology 36, 207211.Google ScholarPubMed
Khokhlova, I. S., Hovhanyan, A., Krasnov, B. R. and Degen, A. A. (2007). Reproductive success in two species of desert fleas: Density-dependence and host effect. Journal of Experimental Biology 210, 21212127.CrossRefGoogle ScholarPubMed
Khokhlova, I. S., Serobyan, V., Krasnov, B. R. and Degen, A. A. (2009). Is the feeding and reproductive performance of the flea, Xenopsylla ramesis, affected by the gender of its rodent host, Meriones crassus? Journal of Experimental Biology 212, 14291435.CrossRefGoogle ScholarPubMed
Klomp, H. (1964). Intraspecific competition and the regulation of insect numbers. Annual Review of Entomology 9, 1740.CrossRefGoogle Scholar
Krasnov, B. R. (2008). Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Krasnov, B. R., Burdelova, N. V., Khokhlova, I. S., Shenbrot, G. I. and Degen, A. A. (2005 b). Pre-imaginal interspecific competition in two flea species parasitic on the same rodent host. Ecological Entomology 30, 146155.CrossRefGoogle Scholar
Krasnov, B. R., Hovhanyan, A., Khokhlova, I. S. and Degen, A. A. (2007). Density dependence and feeding success in haematophagous ectoparasites. Parasitology 134, 13791386.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Hovhanyan, A., Khokhlova, I. S. and Degen, A. A. (2008). Evidence for a negative fitness-density relationship between parent density and offspring quality for two Xenopsylla spp. parasitic on desert mammals. Medical and Veterinary Entomology 22, 156166.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Arakelyan, M. S. and Degen, A. A. (2005 a). Is a starving host tastier? Reproduction in fleas parasitizing food limited rodents. Functional Ecology 19, 625631.CrossRefGoogle Scholar
Krasnov, B. R., Khokhlova, I. S., Burdelova, N. V., Mirzoyan, N. S. and Degen, A. A. (2004). Fitness consequences of density-dependent host selection in ectoparasites: testing reproductive patterns predicted by isodar theory in fleas parasitizing rodents. Journal of Animal Ecology 73, 815820.CrossRefGoogle Scholar
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2001 a). The effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). Journal of Medical Entomology 38, 629637.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2001 b). Development rates of two Xenopsylla flea species in relation to air temperature and humidity. Medical and Veterinary Entomology 15, 249258.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2002 a). Time to survival under starvation in two flea species (Siphonaptera: Pulicidae) at different air temperatures and relative humidities. Journal of Vector Ecology 27, 7081.Google ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2002 b). The effect of substrate on survival and development of two species of desert fleas (Siphonaptera: Pulicidae). Parasite 9, 135142.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Degen, A. A. and Rogovin, K. V. (1996). On the biology of Sundevall's jird (Meriones crassus Sundevall) in Negev Highlands, Israel. Mammalia 60, 375391.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., Medvedev, S. G., Khokhlova, I. S. and Vatschenok, V. S. (1998). Habitat-dependence of a parasite-host relationship: flea assemblages in two gerbil species of the Negev Desert. Journal of Medical Entomology 35, 303313.CrossRefGoogle ScholarPubMed
Larsen, K. S. (1995). Laboratory rearing of the squirrel flea Ceratophyllus sciurorum sciurorum with notes on its biology. Entomologia Experimentalis et Applicata 76, 241245.CrossRefGoogle Scholar
Ma, L.-M. (1993). The sex ratios of some fleas in north China. Acta Entomologica Sinica 36, 6366 (in Chinese).Google Scholar
Margalit, Y. and Shulov, A. S. (1972). Effect of temperature on development of prepupa and pupa of the rat flea, Xenopsylla cheopis Rothschild. Journal of Medical Entomology 9, 117125.CrossRefGoogle ScholarPubMed
Medvedev, S. G. and Krasnov, B. R. (2006). Fleas - permanent satellites of small mammals. In Micromammals and Macroparasites: From Evolutionary Ecology to Management (ed. Morand, , Krasnov, S., Poulin, B. R., , R.), pp. 161278. SpringerVerlag, Tokyo, Japan.CrossRefGoogle Scholar
Metzger, M. E. and Rust, M. K. (1997). Effect of temperature on cat flea (Siphonaptera: Pulicidae) development and overwintering. Journal of Medical Entomology 34, 173178.CrossRefGoogle ScholarPubMed
Moser, B. A., Koehler, P. G. and Patterson, R. S. (1991). Effect of larval diet on cat flea (Siphonaptera: Pulicidae) developmental times and adult emergence. Journal of Economic Entomology 84, 12571261.CrossRefGoogle ScholarPubMed
Nicholson, A. J. (1954). An outline of the dynamics of animal populations. Australian Journal of Zoology 2, 965.CrossRefGoogle Scholar
Sharif, M. (1949). Effects of constant temperature and humidity on the development of the larvae and the pupae of the three Indian species of Xenopsylla (Insecta: Siphonaptera). Philosophical Transactions of the Royal Society of London, B 233, 581633.Google Scholar
Shenbrot, G. I., Krasnov, B. R. and Khokhlova, I. S. (1997). On the biology of Wagner's gerbil (Gerbillus dasyurus (Wagner, 1842) (Rodentia: Gerbillidae) in the Negev Highlands, Israel. Mammalia 61, 467486.CrossRefGoogle Scholar
Shryock, J. A. and Houseman, R. M. (2006). Time spent by Ctenocephalides felis (Siphonaptera: Pulicidae) larvae in food patches of varying quality. Environmental Entomology 35, 401404.CrossRefGoogle Scholar
Silverman, J. and Appel, A. G. (1994). Adult cat flea (Siphonaptera, Pulicidae) excretion of host blood proteins in relation to larval nutrition. Journal of Medical Entomology 31, 265271.CrossRefGoogle ScholarPubMed
Silverman, J. and Rust, M. K. (1983). Some abiotic factors affecting the survival of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Environmental Entomology 12, 490495.CrossRefGoogle Scholar
Silverman, J. and Rust, M. K. (1985). Extended longevity of the pre-emerged adult of the cat flea (Siphonaptera: Pulicidae) and factors stimulating emergence from the pupal cocoon. Annals of the Entomological Society of America 78, 763768.CrossRefGoogle Scholar
Silverman, J., Rust, M. K. and Reierson, D. A. (1981). Influence of temperature and humidity on survival and development of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Journal of Medical Entomology 18, 7883.CrossRefGoogle ScholarPubMed
Tripet, F. and Richner, H. (1999). Dynamics of hen flea Ceratophyllus gallinae subpopulations in blue tit nests. Journal of Insect Behavior 12, 159174.CrossRefGoogle Scholar
Tripet, F. and Richner, H. (2002). Larval competition affects the life histories and dispersal behavior of an avian ectoparasite. Ecology 83, 935945.CrossRefGoogle Scholar
Vaughan, J. A. and Coombs, M. E. (1979). Laboratory breeding of the European rabbit flea, Spilopsyllus cuniculi (Dale). Journal of Hygiene 83, 521530.CrossRefGoogle ScholarPubMed