Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T16:51:17.678Z Has data issue: false hasContentIssue false

Detection of quantitative trait loci for internal parasite resistance in sheep. I. Linkage analysis in a Romney×Merino sheep backcross population

Published online by Cambridge University Press:  14 April 2010

S. DOMINIK*
Affiliation:
CSIRO Livestock Industries, Locked Bag 1, Armidale, NSW 2350, Australia
P. W. HUNT
Affiliation:
CSIRO Livestock Industries, Locked Bag 1, Armidale, NSW 2350, Australia
J. McNALLY
Affiliation:
CSIRO Livestock Industries, Locked Bag 1, Armidale, NSW 2350, Australia
A. MURRELL
Affiliation:
CSIRO Livestock Industries, Locked Bag 1, Armidale, NSW 2350, Australia
A. HALL
Affiliation:
CSIRO Livestock Industries, Locked Bag 1, Armidale, NSW 2350, Australia
I. W. PURVIS
Affiliation:
CSIRO Livestock Industries, Locked Bag 1, Armidale, NSW 2350, Australia
*
*Corresponding author: Tel: 0061 2 6776 1376. Fax: 0061 2 6776 1333. E-mail: sonja.dominik@csiro.au

Summary

This study aimed to identify putative quantitative trait loci (QTL) that significantly affect internal parasite resistance in a backcross sheep population. A Romney×Merino backcross (to Merino) flock was challenged in 3 separate infections with Trichostrongylus colubriformis (primary and secondary) and Haemonchus contortus (tertiary). Haematological parameters were measured and faecal worm egg counts (FWEC) were established to estimate parasite burden. QTL mapping was conducted for FWEC and for the changes in haematocrit following H. contortus challenge and in eosinophil numbers following T. colubriformis challenge. Animals were genotyped for 55 microsatellite markers on selected chromosomes 2, 3, 6, 11, 13, 15, 21, and 22. Four putative quantitative trait loci were found; these being for eosinophil change in the primary infection (OAR 21), for FWEC in the first infection and eosinophil change in the secondary infection (OAR 3) and for FWEC in the secondary infection (OAR 22). No significant quantitative trait loci were detected for FWEC or haematocrit change during the Haemonchus contortus infection. The position of the putative quantitative trait loci for eosinophil change on OAR 3 is consistent with other reports of parasite resistance quantitative trait loci, implying some commonality between studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, G. A. A., Gray, G. D., Piper, L. R., Barker, J. S. F., LeJambre, L. F. and Barger, I. A. (1987). The genetics of resistance and resilience to Haemonchus contortus infection in young Merino sheep. International Journal for Parasitology 17, 13551363.CrossRefGoogle ScholarPubMed
Andronicos, N., Hunt, P. W. and Windon, R. G. (2010). Expression of genes in gastrointestinal and lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemonchus contortus. International Journal for Parasitology 40, 417429.CrossRefGoogle ScholarPubMed
Beh, K. J., Callaghan, M. J., Leish, Z., Hulme, D. J., Lenane, I. and Maddox, J. F. (2001). A genome scan for QTL affecting fleece and wool traits in Merino sheep. Wool Technology and Sheep Breeding 49, 8897.Google Scholar
Beh, K. J., Hulme, D. J., Callaghan, M. J., Leish, Z., Lenane, I., Windon, R. G. and Maddox, J. F. (2002). A genome scan for quantitative trait loci affecting resistance to Trichostrongylus colubriformis in sheep. Animal Genetics 33, 97–106.CrossRefGoogle ScholarPubMed
Broman, K. W., Wu, H., Sen, S. and Churchill, G. A. (2003). R/QTL: QTL mapping in experimental crosses. Bioinformatics 29, 889890.CrossRefGoogle Scholar
Colglazier, M. L., Kates, K. C. and Enzie, F. D. (1974). Cambendazole-resistant Haemonchus contortus strain in sheep: further experimental development. Journal of Parasitology 60, 269292.CrossRefGoogle ScholarPubMed
Coltman, D. W., Wilson, K., Pilkington, J. G., Stear, M. J. and Pemberton, J. M. (2001). A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 122, 571582.CrossRefGoogle Scholar
Crawford, A. M., Paterson, K. A., Dodds, K. G., Diez Tascon, C., Williamson, W. A., Thomson, M. R., Bisset, S. A., Beattie, A. E., Greer, G. J., Green, R. S., Wheeler, R., Shaw, R. J., Knowler, K. and McEwan, J. C. (2006). Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genomics 7, Article number 178.CrossRefGoogle ScholarPubMed
Davies, G., Stear, M. J., Benothman, M., Abuagob, O., Kerr, A., Mitchell, S. and Bishop, S. C. (2006). Quantitative trait loci associated with parasitic infection in Scottish blackface sheep. Heredity 96, 252258.CrossRefGoogle ScholarPubMed
Davies, G., Stear, M. J. and Bishop, S. C. (2005). Genetic relationships between indicator traits and nematode parasite infection levels in 6-months-older lambs. Animals Science 80, 143150.CrossRefGoogle Scholar
Dempster, A. P., Laired, N. M. and Rubin, D. B. (1977). Maximum likelihood for incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 39, 138.Google Scholar
Diez-Tascon, C., Keane, O. M., Wilson, T., Zadissa, A., Hyndman, D. L., Baird, D. B., McEwan, J. C. and Crawford, A. M. (2005). Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiological Genomics 21, 5969.CrossRefGoogle ScholarPubMed
Dominik, S. (2005). Quantitative trait loci for internal nematode resistance in sheep: a review. Genetics Selection Evolution 37 (Suppl. 1) S83S96.CrossRefGoogle ScholarPubMed
Douch, P. G. C., Green, R. S., Morris, C. A., McEwan, J. C. and Windon, R. G. (1996). Phenotypic markers for selection of nematode resistant sheep. International Journal for Parasitology 26, 899911.CrossRefGoogle ScholarPubMed
Eady, S. J. (1995). Phenotypic traits associated with resistance to internal parasites. In Breeding for Resistance to Infectious Disease in Small Ruminants (ed. Gray, G. D., Woolaston, R. R. and Eaton, B. T.), pp. 219233. ACIAR, Canberra, Australia.Google Scholar
Gruner, L., Bouix, J. and Brunel, J. C. (2004). High genetic correlations between resistance to Haemonchus contortus and to Trichostrongylus colubriformis in INRA 401 sheep. Veterinary Parasitology 119, 5158.CrossRefGoogle ScholarPubMed
Hayes, B. J. and Goddard, M. E. (2001). The distribution of the effects of genes affecting quantitative traits in livestock. Genetics Selection Evolution 33, 209229.CrossRefGoogle ScholarPubMed
Haley, C. S. and Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315324.CrossRefGoogle ScholarPubMed
Hunt, P., McEwan, J. and Miller, J. (2008). Future perspectives for the implementation of genetic markers for parasite resistance in sheep. Tropical Biomedicine 25(1s), 1833.Google ScholarPubMed
Ingham, A., Reverter, A.,Windon, R., Hunt, P. and Menzies, M. (2008). Gene expression changes in genetically resistant and susceptible sheep following gastrointestinal nematode challenge. International Journal for Parasitology 38, 431442.CrossRefGoogle ScholarPubMed
Karlsson, L. J. E., McLoed, I. M., Leelwardana, D. H., Sissoev, K. and Simmons, J. (1991). Selection for nematode resistance in sheep in the Australian Mediterranean climate zone. In Breeding for Disease Resistance in Sheep (ed. Gray, G. D. and Woolaston, R. R.), pp. 131138. Australian Wool Cooperation, Melbourne, Australia.Google Scholar
Kruglyak, L. and Lander, E. S. (1995). A non-parametric approach for mapping quantitative trait loci. Genetics 139, 14211428.CrossRefGoogle Scholar
Le Jambre, L. F. (1995). Relationship of blood loss to worm numbers, biomass and egg production in Haemonchus infected sheep. International Journal for Parasitology 25, 269273.CrossRefGoogle ScholarPubMed
Lincoln, S. E. and Lander, E. S. (1992). Systematic detection of errors in genetic linkage data. Genomics 14, 604610.CrossRefGoogle ScholarPubMed
Marshall, K., Maddox, J. F., Lee, S. H., Zhang, Y., Kahn, L., Graser, H. U., Gondro, C., Walkden-Brown, S. W. and van der Werf, J. H. J. (2009). Genetic mapping of quantitative trait loci for resistance to Haemonchus contortus in sheep. Animal Genetics 40, 262272.CrossRefGoogle ScholarPubMed
Marshall, K., van der Werf, J. H. J., Maddox, J. F., Graser, H. U., Zhang, Y., Walkden-Brown, S. W. and Kahn, L. (2005). A genome scan for quantitative trait loci for resistance to gastrointestinal parasite Haemonchus contortus in sheep. Proceedings of the Association for the Advancement of Animal Breeding and Genetics 16, 115118.Google Scholar
Moreno, C. R., Gruner, L., Scala, A., Mura, L., Shibler, L., Amigues, Y., Sechi, T., Jacquiet, P., Francois, D., Bouix, J., Carta, A. and Rupp, R. (2006). QTL for resistance to internal parasites in two designs based on natural and experimental conditions of infection. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, August 13–18, Belo Horizonte, MG, Brazil, Paper number 15-05.Google Scholar
Paterson, K. A., McEwan, J. C., Dodds, K. G., Morris, C. A. and Crawford, A. M. (2001). Fine Mapping a locus affecting host resistance to internal parasites in sheep. Proceedings of the Association for the Advancement of Animal Breeding and Genetics 13, 9194.Google Scholar
Windon, R. G. (1996). Genetic control of resistance to helminths in sheep. Veterinary Immunology and Immunopathology 54, 245254.CrossRefGoogle ScholarPubMed
Windon, R. G., Dineen, J. K. and Wagland, B. M. (1987). Genetic control of immunological responsiveness against the intestinal nematode Trichostrongylus colubriformis in lambs. In Merino Improvement Programs in Australia (ed. McGuirk, B. J.), pp. 371375. Australian Wool Corporation, Melbourne, Australia.Google Scholar
Windon, R. G., Gray, G. D. and Woolaston, R. R. (1993). Genetic control of resistance to gastro-intestinal nematodes. Proceedings of the 3rd International Sheep Veterinary Society Conference 17, 3751.Google Scholar
Woolaston, R. R., Barger, I. A. and Piper, L. R. (1990). Response to helminth infection of sheep selected for resistance to Haemonchus contortus. International Journal for Parasitology 20, 10151018.CrossRefGoogle ScholarPubMed
Woolaston, R. R., Manueli, P., Eady, S. J., Barger, I. A., Le Jambre, L. F., Banks, D. J. D. and Windon, R. G. (1996). The value of circulating eosinophil count as a selection criterion for resistance of sheep to trichostrongyle parasites. International Journal for Parasitology 26, 123126.CrossRefGoogle ScholarPubMed
Supplementary material: File

Dominik supplementary material

Appendix

Download Dominik supplementary material(File)
File 26.6 KB