Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:34:55.516Z Has data issue: false hasContentIssue false

Density-dependent processes in the transmission of human onchocerciasis: relationship between microfilarial intake and mortality of the simuliid vector

Published online by Cambridge University Press:  06 April 2009

M. G. Basáñez*
Affiliation:
Department of Biology, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BB, UK Wellcome Centre for Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
H. Townson
Affiliation:
Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
J. R. Williams
Affiliation:
Wellcome Centre for Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
H. Frontado
Affiliation:
Centra Amazonico para Investigation y Control de Enfermedades Tropicales, C.A.I.C.E.T. Puerto Ayacucho, Estado Amazonas, Venezuela
N. J. Villamizar
Affiliation:
Centra Amazonico para Investigation y Control de Enfermedades Tropicales, C.A.I.C.E.T. Puerto Ayacucho, Estado Amazonas, Venezuela
R. M. Anderson
Affiliation:
Wellcome Centre for Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
*
*Corresponding author. Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS. Tel: 01865 281221; Fax: 01865 281245. E-mail: mariagloria.basanez@zoology.oxford.ac.uk.

Summary

In order to construct an analytical model of onchocerciasis transmission, it is necessary to elucidate the functional relationships of the various population rate processes taking place within the human and vector hosts. Two previous papers have explored the evidence for density-dependent regulation in relation to microfilarial intake by, and larval development within, the Simulium host. This paper investigates the survivorship of wild-caught blackfly samples fed on subjects with different intensities of Onchocerca volvulus microfilarial infection. Analyses were based on data for Guatemalan S. ochraceum s.l. (possessing a well-developed cibarial armature), West African S. damnosum s.l. (forest species), and South Venezuelan S. guianense (the latter two lacking a toothed cibarium). The mean survival times of samples of the 3 species, kept under laboratory conditions, decreased as parasite intake increased, the rate of mortality being dependent on the fly’s age (measured as time post-feeding) and on the worm load acquired. An empirical, timedependent hazard function was fitted to observed death rates/fly/day which rose very shortly after engorgement, declined subsequently, and rose again throughout the extrinsic incubation period of the parasite. The parameters of this hazard model were all positively correlated with the density of microfilariae in the bloodmeal. Expressions of survivorship and life-expectancy as explicit functions of time post-feeding and mean parasite intake were derived. The average expectation of life at engorgement for uninfected flies in the laboratory was estimated to be around 1 week for both, armed and unarmed blackflies. Residual life-expectancy decreased with time post-feeding and microfilarial load in both categories of vectors. This decline (resulting from age- and parasite-dependent mortality rates) was much more pronounced in those species lacking a toothed fore-gut. Whilst a fraction of heavily infected S. ochraceum was able to survive the latent period of the parasite, being therefore potentially capable of transmitting the infection, equivalent worm loads in S. guianense resulted in a drastic reduction of the expectation of infective life. These results provide additional evidence to support the hypothesis that, in the case of intrinsically susceptible vectors, unarmed simuliids are more efficient at low microfilarial loads, when the transmission rate from human to vector host is higher, and parasite-induced fly mortality is negligible. The opposite takes place in armed flies, which perform poorly at low parasite burdens and better at heavier loads, with little parasite-induced vector death.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. & May, R. M. (1979). Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions. Parasitology 79, 6394.CrossRefGoogle ScholarPubMed
Anderson, R. M. & Whitfield, P. J. (1975). Survival characteristics of the free-living cercarial population of the ectoparasitic digenean Transversotrema patialensis (Soparker, 1924). Parasitology 70, 295310.CrossRefGoogle Scholar
Anderson, R. M., Whitfield, P. J. & Mills, C. A. (1977). An experimental study of the population dynamics of an ectoparasitic digenean Transversotrema patialense: the cercarial and adult stages. Journal of Animal Ecology 46, 555580.CrossRefGoogle Scholar
Anderson, R. M., Mercer, J. G., Wilson, R. A. & Carter, N. P. (1982). Transmission of Schistosoma mansoni from man to snail: experimental studies of miracidial survival and infectivity in relation to larval age, water temperature, host size and host age. Parasitology 85, 339360.CrossRefGoogle Scholar
Armitage, P. & Berry, G. (1987). Statistical Methods in Medical Research. 2nd Edn.Blackwell Scientific Publications, Oxford.Google Scholar
Bain, O. (1971). Transmission des filarioses. Limitation des passages des microfilaires ingérées vers l’hémocèle du vecteur; interprétation. Annales de Parasitologie 46, 613631.Google ScholarPubMed
Bain, O. (1976). Traversée de la paroi stomacale du vecteur par les microfilaires: Techniques d’étude utilisées, importance épidémiologique. Bulletin of the World Health Organization 54, 397401.Google Scholar
Bain, O., Durette-Desset, M. C. & De León, R. (1974). Onchocercose au Guatemala: L’ingestion des microfilaires par Simulium ochraceum et leur passage dans l’hémocèle de ce vecteur. Annales de Parasitologie 49, 467487.Google Scholar
Basañez, M. G., Yarzabal, L., Takaoka, H., Suzuki, H., Noda, s. & Tada, I. (1988). The vectorial role of several blackfly species (Diptera: Simuliidae) in relation to human onchocerciasis in the Sierra Parima and Upper Orinoco regions of Venezuela. Annals of Tropical Medicine and Parasitology 82, 597611.CrossRefGoogle Scholar
Basañez, M. G., Boussinesq, M., Prod’hon, J., Frontado, H., Villamizar, N. J., Medley, G. F. & Anderson, R. M. (1994). Density-dependent processes in the transmission of human onchocerciasis: intensity of microfilariae in the skin and their uptake by the simuliid host. Parasitology 108, 115127.CrossRefGoogle ScholarPubMed
Basañez, M. G., Remme, J. H. F., Alley, E. S., Bain, O., Shelley, A. J., Medley, G. F. & Anderson, R. M. (1995). Density-dependent processes in the transmission of human onchocerciasis: relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector. Parasitology 110, 409427.CrossRefGoogle ScholarPubMed
Beckett, E. B. (1971). Histological changes in mosquito flight muscle fibres associated with parasitization by filarial larvae. Parasitology 63, 365372.CrossRefGoogle ScholarPubMed
Berry, W. J., Rowley, W. A. & Christensen, B. M. (1986). Influence of developing Brugia pahangi on spontaneous flight activity of Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 23, 441445.CrossRefGoogle ScholarPubMed
Beyer, w. H. (1991). CRC Standard Mathematical Tables and Formulae, 29th Edn. Boca Raton, CRC Press, Florida.Google Scholar
Billingsley, P. F., Medley, G. F., Charlwood, J. D. & Sinden, R. E. (1994). Relationship between prevalence and intensity of Plasmodium falciparum infection in natural populations of Anopheles mosquitoes. American Journal of Tropical Medicine and Hygiene 51, 260270.CrossRefGoogle ScholarPubMed
Birley, M. H., Walsh, J. F. & Davies, J. B. (1983). Development of a model for Simulium damnosum s.l. recolonization dynamics at a breeding site in the Onchocerciasis Control Programme area when control is interrupted. Journal of Applied Ecology 20, 507519.CrossRefGoogle Scholar
Broadbent, S. (1958). Simple mortality rates. Applied Statistics 7, 8695.CrossRefGoogle Scholar
Cheke, R. A., Garms, R. & Kerner, M. (1982). The fecundity of Simulium damnosum s.l. in northern Togo and infections with Onchocerca spp. Annals of Tropical Medicine and Parasitology 76, 561568.CrossRefGoogle ScholarPubMed
Christensen, B. M. (1978). Dirofilaria immitis: effect on the longevity of Aedes trivittatus. Experimental Parasitology 44, 116123.CrossRefGoogle ScholarPubMed
Clements, A. N. & Paterson, G. D. (1981). The analysis of mortality and survival rates in wild populations of mosquitoes. Journal of Applied Ecology 18, 373399.CrossRefGoogle Scholar
Collins, R. C., Campbell, C. C., Wilton, D. P. & Newton, L. (1977). Quantitative aspects of the infection of Simulium ochraceum by Onchocerca volvulus. Tropenmedizin und Parasitologie 28, 235243.Google ScholarPubMed
Collins, R. C., Lehmann, T., Vieira, G. J. C. & Guderian, R. H. (1992 a). Onchocerciasis transmission in Ecuador: vector capacity of Simulium exiguum. American Journal of Tropical Medicine and Hygiene (Suppl.) 47, 151152.Google Scholar
Collins, R. C., Lehmann, T., Vieira, G. J. C. & Guderian, R. H. (1995). Vector competence of Simulium exiguum for Onchocerca volvulus: implications for the epidemiology of onchocerciasis. American Journal of Tropical Medicine and Hygiene 52, 213218.CrossRefGoogle ScholarPubMed
Collins, R. C., Ochoa, J. O., Cupp, E. W., Gonzalez-Peralta, C. & Porter, C. H. (1992 b). Microepidemiology of onchocerciasis in Guatemala: dispersal and survival of Simulium ochraceum. American Journal of Tropical Medicine and Hygiene 47, 147155.CrossRefGoogle ScholarPubMed
Cox, D. R. & Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall, London.Google Scholar
Cupp, E. w. & Collins, R. C. (1979). The gonotrophic cycle in Simulium ochraceum. American Journal of Tropical Medicine and Hygiene 28, 422426.CrossRefGoogle ScholarPubMed
Dalmat, H. T. & Gibson, C. L. (1952). A Study of flight ranges and longevity of blackflies (Diptera: Simuliidae) infected with Onchocerca volvulus. Annals of the Entomological Society of America 45, 605612.CrossRefGoogle Scholar
De León, J. & Duke, B. O. L. (1966). Experimental studies on the transmission of Guatemalan and West African strains of Onchocerca volvulus by Simulium ochraceum, S. metallicum and S. callidum. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 735752.CrossRefGoogle Scholar
Dietz, K. (1982). The population dynamics of onchocerciasis. In Population Dynamics of Infectious Diseases (ed. Anderson, R. M.), pp. 209241. London: Chapman and Hall.CrossRefGoogle Scholar
Duke, B. O. L. (1962 a). Studies on factors influencing the transmission of onchocerciasis. I. The survival rate of Simulium damnosum under laboratory conditions and the effect upon it of Onchocerca volvulus. Annals of Tropical Medicine and Parasitology 56, 130135.CrossRefGoogle ScholarPubMed
Duke, B. O. L. (1962 b). Studies on factors influencing the transmission of onchocerciasis. II. The intake of Onchocerca volvulus microfilariae by Simulium damnosum and the survival of the parasites in the fly under laboratory conditions. Annals of Tropical Medicine and Parasitology 56, 255263.CrossRefGoogle Scholar
Duke, B. O. L. (1966). Onchocerca–Simulium complexes. III. The survival of Simulium damnosum after high intakes of microfilariae of incompatible strains of Onchocerca volvulus and the survival of the parasite in the fly. Annals of Tropical Medicine and Parasitology 60, 495500.CrossRefGoogle Scholar
Duke, B. O. L. (1968 a). Studies on factors influencing the transmission of onchocerciasis. IV. The biting-cycles, infective biting density and transmission potential of ‘forest’ Simulium damnosum. Annals of Tropical Medicine and Parasitology 62, 95106.CrossRefGoogle Scholar
Duke, B. O. L. (1968 b). Studies on factors influencing the transmission of onchocerciasis. V. The stages of Onchocerca volvulus in wild ‘forest’ Simulium damnosum, the fate of the parasites in the fly, and the age-distribution of the biting population. Annals of Tropical Medicine and Parasitology 62, 107116.CrossRefGoogle Scholar
Duke, B. O. L. (1970). OnchocercaSimulium complexes. VI. Experimental studies on the transmission of Venezuelan and West African strains of Onchocerca volvulus by Simulium metallicum and S. exiguum in Venezuela. Annals of Tropical Medicine and Parasitology 64, 421431.CrossRefGoogle ScholarPubMed
Duke, B. O. L. (1973). Studies on factors influencing the transmission of onchocerciasis. VIII. The escape of infective Onchocerca volvulus larvae from feeding ‘forest’ Simulium damnosum. Annals of Tropical Medicine and Parasitology 67, 9599.CrossRefGoogle Scholar
Duke, B. O. L. & Moore, P. J. (1968). The contribution of different age groups to the transmission of onchocerciasis in a Cameroon forest village. Transactions of the Royal Society of Tropical Medicine and Hygiene 62, 2228.CrossRefGoogle Scholar
Dye, C. (1990). Epidemiological significance of vector-parasite interactions. Parasitology 101, 409415.CrossRefGoogle ScholarPubMed
Dye, C. (1992). The analysis of parasite transmission by bloodsucking insects. Annual Review of Entomology 37, 119.CrossRefGoogle ScholarPubMed
Dye, C. (1994). The epidemiological context of vector control. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 147149.CrossRefGoogle ScholarPubMed
Dye, C. & Baker, R. H. A. (1986). Measuring the capacity of blackflies as vectors of onchocerciasis: Simulium damnosum s.l. in southwest Sudan. Journal of Applied Ecology 23, 883893.CrossRefGoogle Scholar
Dye, C., Guy, M. W., Elkins, D. B., Wilkes, T. J. & Killick-Kendrick, R. (1987). The life expectancy of phlebotomine sandflies: first field estimates from southern France. Medical and Veterinary Entomology 1, 417425.CrossRefGoogle ScholarPubMed
Dye, C. & Williams, B. G. (1995). Non-linearities in the dynamics of indirectly-transmitted infections (or, does having a vector make a difference?). In Ecology of Infectious Diseases in Natural Populations (ed. Grenfell, B. T. & Dobson, A. P.), pp. 260279. Cambridge University Press, Publications of the Newton Institute, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Eichner, M., Renz, A., Wahl, G. & Enyong, P. (1991). Development of Onchocerca volvulus microfilariae injected into Simulium species from Cameroon. Medical and Veterinary Entomology 5, 293297.CrossRefGoogle ScholarPubMed
Ellrott, D. (1987). The effect of different microfilarial densities of Brugia malayi in Mastomys natalensis on the mortality of the vector Aedes aegypti. Tropical Medicine and Parasitology 38, 344.Google Scholar
Findlay, w. & Watt, D. A. (1985). Pascal. An Introduction to Methodical Programming, 3rd. Edn.Pitman, London.Google Scholar
Gad, A. M., Maier, W. A. & Piekarski, G. (1979). Pathology of Anopheles stephensi after infection with Plasmodium berghei berghei. I. Mortality rate. Zeitschrift für Parasitenkunde 60, 249261.CrossRefGoogle ScholarPubMed
Galliard, P. H. (1957). Mortalité chez les culicidés infestés par Dirofilaria immitis et Wuchereria bancrofti. Zeitschrift für Tropenmedizin und Parasitologie 8, 476485.Google Scholar
Garms, R. (1975). Observations on filarial infections and parous rates of anthropophilic blackflies in Guatemala, with reference to the transmission of Onchocerca volvulus. Tropenmedizin und Parasitologie 26, 169182.Google Scholar
Garrett-Jones, C. (1964). Prognosis for the interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature 204, 11731175.CrossRefGoogle ScholarPubMed
Gillies, M. T. (1961). Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa by means of marking and release experiments. Bulletin of Entomological Research 52, 99127.CrossRefGoogle Scholar
Gillies, M. T. & Wilkes, T. J. (1965). A study of the age-composition of populations of Anopheles gambiae Giles and A. funestus Giles in North-Eastern Tanzania. Bulletin of Entomological Research 56, 237262.CrossRefGoogle Scholar
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society 115, 513585.Google Scholar
Hacker, C. S. (1971). The differential effect of Plasmodium gallinaceum on the fecundity of several strains of Aedes aegypti. Journal of Invertebrate Pathology 18, 373377.CrossRefGoogle ScholarPubMed
Ham, P. J. & Banya, A. J. (1984). The effect of experimental Onchocerca infections on the fecundity and oviposition of laboratory reared Simulium sp (Diptera, Simuliidae). Tropenmedizin und Parasitologie 35, 6166.Google ScholarPubMed
Ham, P. J. & Gale, C. L. (1984). Blood meal enhanced Onchocerca development and its correlation with fecundity in laboratory reared blackflies (Diptera, Simuliidae). Tropenmedizin und Parasitologie 35, 212216.Google ScholarPubMed
Hashiguchi, Y., Kawabata, M., Ito, S. & Recinos, M. M. (1981). Limited fly load and development of Onchocerca volvulus microfilariae in Guatemalan Simulium ochraceum. Journal of Helminthology 55, 189196.CrossRefGoogle ScholarPubMed
Hastings, N. A. J. & Peacock, J. B. (1974). Statistical Distributions. Butterworths, London.Google Scholar
Husain, A. & Kershaw, W. E. (1971). The effect of filariasis on the ability of a vector mosquito to fly and feed and to transmit the infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 617619.CrossRefGoogle ScholarPubMed
Jordan, P. & Goatly, K. D. (1962). Bancroftian filariasis in Tanganyika: A quantitative study of the uptake, fate and development of microfilariae of Wuchereria bancrofti in Culex fatigans. Annals of Tropical Medicine and Parasitology 56, 173187.CrossRefGoogle Scholar
Kahn, H. A. & Sempos, C. T. (1989). Statistical Methods in Epidemiology. Oxford University Press, Oxford.Google Scholar
Kershaw, W. E., Chalmers, T. A. & Duke, B. O. L. (1954). Studies on the intake of microfilariae by their insect vectors, their survival, and their effect on the survival of their vectors. IV. The survival rate of Chrysops under laboratory conditions, and the effect upon it of Loa loa. Annals of Tropical Medicine and Parasitology 48, 329339.CrossRefGoogle ScholarPubMed
Kershaw, W. E., Chalmers, T. A. & Lavoipierre, M. M. J. (1954). Studies on arthropod survival. I. The pattern of mosquito survival in laboratory conditions. Annals of Tropical Medicine and Parasitology 48, 442450.CrossRefGoogle ScholarPubMed
Kershaw, W. E., Lavoipierre, M. M. J. & Chalmers, T. A. (1953). Studies on the intake of microfilariae by their insect vectors, their survival, and their effect on the survival of their vectors. I. Dirofilaria immitis and Aëdes aegypti. Annals of Tropical Medicine and Parasitology 47, 207224.CrossRefGoogle ScholarPubMed
Kirkwood, B. R. (1988). Essentials of Medical Statistics. Oxford Scientific Publications, Oxford.Google Scholar
Klein, T. A., Harrison, B. A., André, R. G., Whitmire, R. E. & Inlao, I. (1982). Detrimental effects of Plasmodium cynomolgy infections on the longevity of Anopheles dirus. Mosquito News 42, 265271.Google Scholar
Klein, T. A., Harrison, B. A., Grove, J. S., Dixon, S. V. & André, R. G. (1986). Correlation of survival rates of Anopheles dirus A (Diptera: Culicidae) with different infection densities of Plasmodium cynomolgy. Bulletin of the World Health Organization 64, 901907.Google Scholar
Krafsur, E. S. & Garrett-Jones, C. (1977). The survival in nature of Wuchereria-infected Anopheles funestus Giles in North-eastern Tanzania. Transacions of the Royal Society of Tropical Medicine and Hygiene 71, 155160.CrossRefGoogle Scholar
Laurence, B. R. (1963). Natural mortality in two filarial vectors. Bulletin of the World Health Organization 28, 229234.Google ScholarPubMed
Lavoipierre, M. M. J. (1958). Studies on the host–parasite relationships of filarial nematodes and their arthropod hosts. II. The arthropod as a host to the nematode: a brief appraisal of our present knowledge, based on a study of the more important literature from 1878 to 1957. Annals of Tropical Medicine and Parasitology 52, 326345.CrossRefGoogle Scholar
Lavoipierre, M. M. J. (1961). Blood-feeding, fecundity and ageing in Aedes aegypti var. queenslandensis. Nature 191, 575576.CrossRefGoogle ScholarPubMed
le berre, R. (1966). Contribution a l’étude biologique et écologique de Simulium damnosum Theobald, 1903 (Diptera Simuliidae). Mémoires de I’Office de la Recherche Scientifique et Technique Outre-Mer 17, 204.Google Scholar
le berre, R., Balay, G., Brengues, J. & Coz, J. (1964). Biologie et écologie de la femelle de Simulium damnosum Theobald, 1903, en fonction des zones bioclimatiques d’ Afrique occidentale. Influence sur l’epidemiologie de l’onchocercose. Bulletin of the World Health Organization 31, 843855.Google Scholar
Lewis, D. J. (1953). Simulium damnosum and its relation to onchocerciasis in the Anglo-Egyptian Sudan. Bulletin of Entomological Research 43, 597644.CrossRefGoogle Scholar
Lindsay, S. W. & Denham, D. A. (1986). The ability of Aedes aegypti mosquitoes to survive and transmit infective larvae of Brugia pahangi over successive blood meals. Journal of Helminthology 60, 159168.CrossRefGoogle ScholarPubMed
Lines, J. D., Wilkes, T. J. & Lyimo, E. O. (1991). Human malaria infectiousness measured by age-specific sporozoite rates in Anopheles gambiae in Tanzania. Parasitology 102, 167177.CrossRefGoogle ScholarPubMed
Lyimo, E. O. & Koella, J. C. (1992). Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite Plasmodium falciparum. Parasitology 104, 233237.CrossRefGoogle ScholarPubMed
Macdonald, G. (1952 a). The analysis of the sporozoite rate. Tropical Diseases Bulletin 49, 569586.Google ScholarPubMed
Macdonald, G. (1952 b). The analysis of equilibrium in malaria. Tropical Diseases Bulletin 49, 813829.Google ScholarPubMed
Macdonald, G. (1957). The Epidemiology and Control of Malaria. Appendix I. Mathematical Statement. Oxford University Press, London.Google Scholar
Maier, W. A., Becker-Feldman, H. & Seitz, H. M. (1987). Pathology of malaria-infected mosquitoes. Parasitology Today 3, 216218.CrossRefGoogle ScholarPubMed
Medley, G. F., Sinden, R. E., Fleck, S., Billingsley, P. F., Tirawanchai, N. & Rodriguez, M. H. (1993). Heterogeneity in patterns of malarial oocyst infections in the mosquito vector. Parasitology 106, 441449.CrossRefGoogle ScholarPubMed
Millest, A. L., Cheke, R. A., Howe, M. A., Lehane, M. J. & Garms, R. (1992). Determining the ages of adult females of different members of the Simulium damnosum complex (Diptera: Simuliidae) by the pteridine accumulation method. Bulletin of Entomological Research 82, 219226.CrossRefGoogle Scholar
Omar, M. S. & Garms, R. (1975). The fate and migration of microfilariae of a Guatemalan strain of Onchocerca volvulus in Simulium ochraceum and S. metallicum, and the role of the buccopharyngeal armature in the destruction of microfilariae. Tropenmedizin und Parasitologie 26, 183190.Google ScholarPubMed
Omar, M. S. & Garms, R. (1977). Lethal damage to Simulium metallicum following high intakes of Onchocerca volvulus microfilariae in Guatemala. Tropenmedizin und Parasitologie 28, 109119.Google ScholarPubMed
Philippon, B. (1977). Étude de la transmission d’Onchocerca volvulus (Leuckart, 1893) (Nematoda, Onchocercidae) par Simulium damnosum Theobald, 1903 (Diptera, Simuliidae) en Afrique tropicale. Travaux et Documents de I’Office de la Recherche Scientifique et Technique Outre-Mer 63, 308.Google Scholar
Philippon, B. & Bain, O. (1972). Transmission de l’onchocercose humaine en zone de savane d’Afrique occidentale, passage des microfilaires d’Onchocerca volvulus Leuck. dans I’hémocele de la femelle de Simulium damnosum Th. Cahiers O.R.S.T.O.M., série Entomologie médicate et Parasitologie 10, 251261.Google Scholar
Pichon, G. (1974). Relations mathematiques entre le nombre des microfilaires ingérées et le nornbre des parasites chez différents vecteurs natureles ou experimentaux de filarioses. Cahiers O.R.S.T.O.M., série Entomologie médicale et Parasitologie 12, 199216.Google Scholar
Pichon, G., Perrault, G. & Laigret, J. (1974). Rendement parasitaire chez les vecteurs de filarioses. Bulletin of the World Health Organization 51, 517524.Google Scholar
Plaisier, A. P., van Oortmarssen, G. J., Remme, J. & Habbema, J. D. F. (1991). The reproductive lifespan of Onchocerca volvulus in West African savanna. Acta Tropica 48, 271284.CrossRefGoogle ScholarPubMed
Porter, C. H. & Collins, R. C. (1985). The gonotrophic cycle of wild Simulium ochraceum and the associated development of Onchocerca volvulus. American Journal of Tropical Medicine and Hygiene 34, 302309.CrossRefGoogle ScholarPubMed
Porter, C. H. & Collins, R. C. (1988 a). Biting activity of blackflies in Guatemala: parity rates and differences between localities and habitats. American Journal of Tropical Medicine and Hygiene 38, 142152.CrossRefGoogle ScholarPubMed
Porter, C. H. & Collins, R. C. (1988 b). Seasonality of adult blackflies and Onchocerca volvulus transmission in Guatemala. American Journal of Tropical Medicine and Hygiene 38, 153167.CrossRefGoogle ScholarPubMed
Renshaw, M. & Hurd, H. (1994 a). The effects of Onchocerca lienalis infection on vitellogenesis in the British blackfly Simulium ornatum. Parasitology 109, 337343.CrossRefGoogle ScholarPubMed
Renshaw, M. & Hurd, H. (1994 b). Vitellogenin sequestration by Simulium oocytes: the effect of Onchocerca infection. Physiological Entomology 19, 7074.CrossRefGoogle Scholar
Renz, A., Barthelmess, C. & Eisenbeiss, W. (1987). Vectorial capacity of Simulium damnosum s.l. populations in Cameroon. Tropical Medicine and Parasitology 38, 344345.Google Scholar
Rowland, M. & Boersma, E. (1988). Changes in the spontaneous flight activity of the mosquito Anopheles stephensi by parasitization with the rodent malaria Plasmodium yoelii. Parasitology 97, 221227.Google ScholarPubMed
Rowland, M. W. & Lindsay, S. W. (1986). The circadian flight activity of Aedes aegypti parasitized with the filarial nematode Brugia pahangi. Physiological Entomology 11, 325334.CrossRefGoogle Scholar
Russell, P. F. & Rao, T. R. (1942). Observations on longevity of Anopheles culicifacies imagines. American Journal of Tropical Medicine 22, 517533.Google Scholar
Sacher, G. A. (1956). On the statistical nature of mortality with special reference to chronic radiation mortality. Radiology 67, 250258.CrossRefGoogle Scholar
Sacher, G. A. & Trucco, E. (1962). The stochastic theory of mortality. Annals of the New York Academy of Sciences 96, 9851007.CrossRefGoogle ScholarPubMed
Samarawickrema, W. A. (1967). A study of the agecomposition of natural populations of Culex pipiens fatigans Wiedemann in relation to the transmission of filariasis due to Wuchereria bancrofti (Cobbold) in Ceylon. Bulletin of the World Health Organization 37, 117137.Google Scholar
Samarawickrema, W. A. & Laurence, B. R. (1978). Loss of filarial larvae in a natural mosquito population. Annals of Tropical Medicine and Parasitology 72, 561565.CrossRefGoogle Scholar
Schiefer, B. A., Ward, R. A. & Eldridge, B. F. (1977). Plasmodium cynomolgy: effects of malaria infection on laboratory flight performance of Anopheles stephensi mosquitoes. Experimental Parasitology 41, 397404.CrossRefGoogle Scholar
Shelley, A. J. (1988). Vector aspects of the epidemiology of onchocerciasis in Latin America. Annual Review of Entomology 30, 337366.CrossRefGoogle Scholar
Shelley, A. J. (1991). Simuliidae and the transmission and control of human onchocerciasis in Latin America. Cadernos de Saúde Pública, RJ 7, 310327.CrossRefGoogle ScholarPubMed
Shelley, A. J. (1994). Factors affecting filarial transmission by simuliids. In Advances in Disease Vector Research (ed. Harris, K. F.), Vol. 10, pp. 183214. Springer-Verlag, New York.CrossRefGoogle Scholar
Shelley, A. J., Luna-Dias, A. P. A., Moraes, M. A. P. & Procunier, W. S. (1987). The status of Simulium oyapockense and S. limbatum as vectors of human onchocerciasis in Brazilian Amazonia. Medical and Veterinary Entomology 1, 219234.CrossRefGoogle ScholarPubMed
Sinton, J. A. & Shute, P. G. (1938). A report on the longevity of mosquitoes in relation to the transmission of malaria in nature. Reports of Public Health and Medical Subjects, Ministry of Health, London 85, 145.Google Scholar
Southwood, T. R. E. (1978). Ecological Methods With Particular Reference to the Study of Insect Populations 2nd Edn.Chapman and Hall, London.Google Scholar
Takaoka, H., Ochoa, J. O., Juarez, E. L. & Hansen, K. M. (1982). Effects of temperature on development of Onchocerca volvulus in Simulium ochraceum, and longevity of the simuliid vector. Journal of Parasitology 68, 478483.CrossRefGoogle ScholarPubMed
Takaoka, H., Suzuki, H., Noda, S., Ochoa, J. O. & Tada, I. (1984 a). The intake, migration and development of Onchocerca volvulus microfilariae in Simulium haematopotum in Guatemala. Japanese Journal of Sanitary Zoology 35, 121127.Google Scholar
Takaoka, H., Suzuki, H., Noda, S., Tada, I., Basañez, M. G. & Yarzabal, L. (1984 b). Development of Onchocerca volvulus larvae in Simulium pintoi in the Amazonas region of Venezuela. American Journal of Tropical Medicine and Hygiene 33, 414419.CrossRefGoogle ScholarPubMed
Townson, H. (1970). The effect of infection with Brugia pahangi on the flight of Aedes aegypti. Annals of Tropical Medicine and Parasitology 64, 411420.CrossRefGoogle ScholarPubMed
Townson, H. (1971). The mortality of various genotypes of the mosquito Aedes aegypti following the uptake of microfilariae of Brugia pahangi. Annals of Tropical Medicine and Parasitology 65, 93106.CrossRefGoogle ScholarPubMed
Wharton, R. H. (1957). Studies on filariasis in Malaya: The efficiency of Mansonia longipalpis as an experimental vector of Wuchereria malayi. Annals of Tropical Medicine and Parasitology 51, 422439.CrossRefGoogle ScholarPubMed
Williams, P. & Kershaw, W. E. (1961). Studies on the intake of microfilariae by their insect vectors, their survival, and their effect on the survival of their vectors. X. The survival of the tropical rat mite, the vector of filariasis in the cotton rat. Annals of Tropical Medicine and Parasitology 55, 217230.CrossRefGoogle ScholarPubMed
World Health Organization (1987). WHO Expert Committee on Onchocerciasis. WHO Technical Report Series No. 752. Geneva.Google Scholar
Zahedi, M. & White, G. B. (1994). Filaria vector competence of some Anopheles species. Tropical Medicine and Parasitology 45, 2732.Google ScholarPubMed