Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T20:44:57.081Z Has data issue: false hasContentIssue false

The Triassic Explosion(?): a statistical model for extrapolating biodiversity based on the terrestrial Molteno Formation

Published online by Cambridge University Press:  08 April 2016

John Anderson
Affiliation:
National Botanical Institute, Private Bag X101, Pretoria, 0001 South Africa
Heidi Anderson
Affiliation:
National Botanical Institute, Private Bag X101, Pretoria, 0001 South Africa
Paul Fatti
Affiliation:
Department of Statistics and Actuarial Science, University of the Witwatersrand, P.O. WITS, 2050 South Africa
Herbert Sichel
Affiliation:
Department of Statistics and Actuarial Science, University of the Witwatersrand, P.O. WITS, 2050 South Africa

Abstract

Fitting the generalized inverse Gaussian-Poisson distribution (GIGP) to observed frequency distributions of taxa from the Late Triassic Molteno Formation of South Africa has yielded estimates of the corresponding preserved biodiversities. Three extrapolations have been made on the basis of the uniquely rich megaflora/insect coassemblages from 100 taphocoenoses: insect species—335 observed, 7740 preserved; vegetative species—206 observed, 667 preserved; gymnosperm ovulate orders—16 observed, 84 preserved. The reliability of the results varies according to the abundance and observed diversity of the taxa. These results, with further estimations in a companion paper of existed diversity (regional, continental and global), hint at Late Triassic floral and faunal richness akin to today. This conflicts with the traditionally held model of an increasing cone of biodiversity through time and suggests a phase of explosive evolution in the Triassic hitherto unsuspected. Application of the GIGP to other well-documented collections from other periods might reveal a pattern of diversity trends offering fundamentally new insights into the evolving terrestrial biosphere.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, J. M., and Anderson, H. M. 1983. The palaeoflora of southern Africa: Molteno Formation (Triassic), Vol. 1, Part 1, Introduction; Part 2, Dicroidium. A. A. Balkema, Rotterdam.Google Scholar
Anderson, J. M., and Anderson, H. M. 1989. The palaeoflora of southern Africa: Molteno Formation (Triassic), Vol. 2, The gymnosperms (excluding Dicroidium). A. A. Balkema, Rotterdam.Google Scholar
Anderson, J. M., and Anderson, H. M. 1993a. Terrestrial flora and fauna of the Gondwana Triassic, Part 1, Occurrences. In Lucas, S. G. and Morales, M., eds. The nonmarine Triassic. New Mexico Museum of Natural History and Science Bulletin 3:312.Google Scholar
Anderson, J. M., and Anderson, H. M. 1993b. Terrestrial flora and fauna of the Gondwana Triassic, Part 2, Co-evolution. In Lucas, S. G. and Morales, M., eds. The nonmarine Triassic. New Mexico Museum of Natural History and Science Bulletin 3:1325.Google Scholar
Anderson, J. M., and Anderson, H. M. In press. The Molteno Fm.:window onto late Triassic floral diversity. In Professor Birbal Sahni Centenary 1991, International Conference, Allahabad, India.Google Scholar
Bunge, J., and Fitzpatrick, M. 1993. Estimating the number of species: a review. Journal of the American Statistical Association 88:364373.Google Scholar
Cairncross, B., Anderson, J. M., and Anderson, H. M. 1995. Palaeoecology of the Triassic Molteno Formation, Karoo Basin, South Africa—sedimentological and palaeological evidence. South African Journal of Geology 98:452478.Google Scholar
Chao, A., and Lee, S.-M. 1992. Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87:210217.Google Scholar
Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B., Monagan, M. B., and Watt, S. M. 1991. Maple V library reference manual. Springer, New York.Google Scholar
Chatterjee, S. 1991. Cranial anatomy and relationships of a new Triassic bird from Texas. Philosophical Transactions of the Royal Society of London B 332:277346.Google Scholar
Chiappe, L. M. 1995. The first 85 million years of avian evolution. Nature 378:349355.Google Scholar
Cornet, B. 1986. The leaf venation and reproductive structures of a late Triassic angiosperm, Sanmiguelia lewisii. Evolutionary Theory 7:231309.Google Scholar
Crane, P. R., Friis, E. M., and Raunsgaard Pedersen, K. 1995. The origin and early diversification of angiosperms. Nature 374:2733.Google Scholar
Efron, B., and Thisted, R. 1975. Estimating the number of unseen species: how many words did Shakespeare know? Biometrika 6:435447.Google Scholar
Fisher, R. A., Corbet, A. S., and Williams, C. B. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12:4248.Google Scholar
Good, I. J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40:237264.Google Scholar
Good, I. J. and Toulmin, G. H. 1956. The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 43:4563.Google Scholar
Gould, S. J. 1995. Of it, not above it. Nature 377:681682.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. K. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598604.Google Scholar
Heywood, V. H., Moore, D. M., Richardson, I. B. K., and Stearn, W. T. 1993. Flowering plants of the world. Oxford University Press, New York.Google Scholar
Heltshe, J. F., and Forrester, N. E. 1983. Estimating species richness using the Jackknife Procedure. Biometrics 39:111.CrossRefGoogle ScholarPubMed
Johnson, N. L., Kotz, S., and Kemp, A. W. 1993. Univariate discrete distributions, 2d ed.Wiley, New York.Google Scholar
Jolly, G. M. 1965. Explicit estimates from capture-recapture data with both death and immigration—stochastic models. Biometrika 52:225247.Google Scholar
Kempton, R. A., and Taylor, L. R. 1974. Log-series and log-normal parameters as diversity discriminants for the Lepidoptera. Journal of Animal Ecology 12:4248.Google Scholar
Knoll, A. H., and Niklas, K. J. 1987. Adaptation, plant evolution, and the fossil record. Review of Palaeobotany and Palynology 50:127149.Google Scholar
Nichols, J. D., and Pollock, K. H. 1983. Estimating taxonomic diversity, extinction rates, and speciation rates from fossil data using capture-recapture models. Paleobiology 9:150163.Google Scholar
Niklas, K. J., and Tiffney, B. H. 1994. The quantification of plant biodiversity through time. Philosophical Transactions of the Royal Society of London B 345:3544.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of floral plants, a preliminary assessment. In Hecht, M. K., Steere, W. C., and Wallace, B., eds. Evolutionary Biology 12:189, Plenum, New York.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1983. Patterns in vascular land plant diversification. Nature 303:614616.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1985. Patterns in vascular land plant diversification: an analysis at the species level. pp. 97128in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Ord, J. K., and Whitmore, G. A. 1986. The Poisson-inverse Gaussian distribution as a model for species abundance. Communications in Statistics—Theory and Methods 15:853871.Google Scholar
Rutherford, M. C., and Westfall, R. H. 1994. Biomes of southern Africa: an objective categorization. Memoirs of the Botanical Survey of South Africa 63:194.Google Scholar
Seber, G. A. F. 1965. A note on the multiple-recapture census. Biometrika 52:249259.Google Scholar
Seber, G. A. F. 1973. The estimation of animal abundance and related parameters. Griffin, London.Google Scholar
Sichel, H. S. 1971. On a family of discrete distributions particularly suited to represent long-tailed frequency data. pp. 5197in Laubscher, N. F., ed. Proceedings of the Third Symposium on Mathematical Statistics, CSIR, Pretoria.Google Scholar
Sichel, H. S. 1974. On a distribution representing sentence-length in written prose. Journal of the Royal Statistical Society A 137:2534.Google Scholar
Sichel, H. S. 1975. On a distribution law for word frequencies. Journal of the American Statistical Association 70:542547.Google Scholar
Sichel, H. S. 1986a. Parameter estimation for a word frequency distribution based on occupancy theory. Communications in Statistics—Theory and Methods 15:935949.Google Scholar
Sichel, H. S. 1986b. Word frequency distributions and type-token characteristics. The Mathematical Scientist 11:4572.Google Scholar
Sichel, H. S. 1991. Modelling species-abundance frequencies and species-individual functions with the generalized inverse Gaussian-Poisson distribution law. Unpublished manuscript. Department of Statistics and Actuarial Science, University of the Witwatersrand, South Africa.Google Scholar
Sichel, H. S. 1992. Anatomy of the generalized inverse Gaussian-Poisson distribution with special applications to bibliometric studies. Information Processing and Management 28:517.CrossRefGoogle Scholar
Stace, C. A. 1989. Plant taxonomy and biosystematics. Edward Arnold, London.Google Scholar
Taylor, L. R., Kempton, R. A., and Woiwod, I. P. 1976. Diversity statistics and the log-series model. Journal of Animal Ecology 45:255272.Google Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115:117155.Google Scholar