Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:11:48.977Z Has data issue: false hasContentIssue false

Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems

Published online by Cambridge University Press:  08 April 2016

Martin Aberhan
Affiliation:
Museum für Naturkunde, Humboldt University, Invalidenstr. 43, D-10115 Berlin, Germany. E-mail: martin.aberhan@museum.hu-berlin.de
Wolfgang Kiessling
Affiliation:
Museum für Naturkunde, Humboldt University, Invalidenstr. 43, D-10115 Berlin, Germany. E-mail: martin.aberhan@museum.hu-berlin.de
Franz T. Fürsich
Affiliation:
Institut für Paläontologie, Universität Würzburg, Pleicherwall 1, D-97070 Würzburg, Germany

Abstract

Evaluating the relative importance of biotic versus abiotic factors in governing macroevolutionary patterns is a central question of paleobiology. Here, we analyzed patterns of changes in global relative abundances and diversity of ecological groups to infer the role of biological interactions as driving evolutionary forces in mid-Mesozoic macrobenthic marine ecosystems. Specifically, we tested the hypothesis of escalation, which states that macroevolutionary patterns were controlled by an increasing pressure exerted by enemies on their victims. Associated with evidence of increasing levels of predation and biogenic sediment reworking (bulldozing) is an increasing representation of predation- and disturbance-resistant groups in the fossil record. In particular, we observe increasing proportions of mobile organisms; a decline of vulnerable epifauna living freely on the substrate; and a trend toward infaunalization of the benthos. These trends were most pronounced in the paleotropics, i.e., the region where biological activity is thought to have been highest. The observation that these changes affected several biotic traits and occurred within independent clades argues against the overriding role of a single key adaptive innovation in causing shifts in ecological abundance. Also, changes in the abiotic environment cannot explain these faunal patterns because of lacking cross-correlations with physico-chemical parameters such as global sea level, climate, and seawater chemistry. We conclude that in marine benthic ecosystems of the mid Mesozoic, enemy-driven evolution, or escalation, was a plausible and important factor.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M. 1994. Guild-structure and evolution of Mesozoic benthic shelf communities. Palaios 9:516545.Google Scholar
Alexander, R. R., and Dietl, G. P. 2003. The fossil record of shell-breaking predation on marine bivalves and gastropods. Pp. 141176 in Kelley, P. H., Kowalewski, M., and Hansen, T. A., eds. Predator-prey interactions in the fossil record. Kluwer Academic/Plenum, New York.Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.Google Scholar
Bambach, R. K. 2002. Supporting predators: changes in the global ecosystem inferred from changes in predator diversity. Pp. 319351 in Kowalewski, and Kelley, 2002.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.Google Scholar
Blake, D. B., and Hagdorn, H. 2003. The Asteroidea (Echinoder-mata) of the Muschelkalk (Middle Triassic of Germany). Paläontologische Zeitschrift 77:2358.Google Scholar
Brandt, D. S. 1986. Preservation of event beds through time. Palaios 1:9296.Google Scholar
Dickson, J. A. D. 2002. Fossil echinoderms as monitor of the Mg/ Ca ratio of Phanerozoic oceans. Science 298:12221224.Google Scholar
Dietl, G. P., and Kelley, P. H. 2002. The fossil record of predator-prey arms races: coevolution and escalation hypotheses. Pp. 353374 in Kowalewski, and Kelley, 2002.Google Scholar
Donovan, S. K., and Gale, A. S. 1990. Predatory asteroids and the decline of the articulate brachiopods. Lethaia 23:7786.Google Scholar
Fürsich, F. T., and Jablonski, D. 1984. Late Triassic naticid drill holes: carnivorous gastropods gain a major adaptation but fail to radiate. Science 224:7880.Google Scholar
Futuyma, D. J., and Slatkin, M. 1983. Introduction. Pp. 113 in Futuyma, D. J. and Slatkin, M., eds. Coevolution. Sinauer, Sunderland, Mass. Google Scholar
Golonka, J., Ross, M. I., and Scotese, C. R. 1994. Phanerozoic paleogeographic and paleoclimatic modeling maps. In Embry, A. F., Beauchamp, B., and Glass, D. J., eds. Pangea. Canadian Society of Petroleum Geologists Memoir 17:147.Google Scholar
Gradstein, F. M., and Ogg, J. G. 2004. Geologic time scale 2004 —why, how, and where next! Lethaia 37:175181.Google Scholar
Hallam, A. 1975. Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature 258:493496.Google Scholar
Hallam, A. 1998. Speciation patterns and trends in the fossil record. Geobios 30:921930.Google Scholar
Hallam, A. 2001. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeography, Palaeoclimatology, Palaeoecology 167:2337.Google Scholar
Hardie, L. A. 1996. Secular variation in seawater chemistry: an explanation for the coupled secular variations in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279283.Google Scholar
Harper, E. M. 1991. The role of predation in the evolution of cementation in bivalves. Palaeontology 34:455460.Google Scholar
Harper, E. M., and Wharton, D. S. 2000. Boring predation and Mesozoic articulate brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology 158:1524.Google Scholar
Harper, E. M., Palmer, T. J., and Alphey, J. R. 1997. Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry. Geological Magazine 134:403407.Google Scholar
Harper, E. M., Forsythe, G. T. W., and Palmer, T. 1998. Taphonomy and the Mesozoic marine revolution: preservation state masks the importance of boring predators. Palaios 13:352360.Google Scholar
Hautmann, M. 2001. Taxonomy and phylogeny of cementing Triassic bivalves (families Prospondylidae, Plicatulidae, Dimyidae and Ostreidae). Palaeontology 44:339373.Google Scholar
Hautmann, M. 2004. Early Mesozoic evolution of alivincular bivalve ligaments and its implications for the timing of the “Mesozoic marine revolution.” Lethaia 37:165172.Google Scholar
Hayek, L. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Copé's rule. Nature 385:250252.Google Scholar
Jager, M., and Fraaye, R. 1997. The diet of the Early Toarcian ammonite Harpoceras falciferum . Palaeontology 40:557574.Google Scholar
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., and Parkinson, D. N. 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, London 159:351378.Google Scholar
Jones, C. E., Jenkyns, H. C., and Hesselbo, S. P. 1994. Strontium isotopes in Early Jurassic seawater. Geochimica et Cosmochimica Acta 58:12851301.Google Scholar
Kelley, P. H., and Hansen, T. A. 2003. The fossil record of drilling predation on bivalves and gastropods. Pp. 113139 in Kelley, P. H., Kowalewski, M., and Hansen, T. A., eds. Predator-prey interactions in the fossil record. Kluwer Academic/Plenum, New York.Google Scholar
Kidwell, S. M., and Brenchley, P. J. 1996. Evolution of the fossil record: thickness trends in marine skeletal accumulations and their implications. Pp. 290336 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Kowalewski, M., and Kelley, P. H., eds. 2002. The fossil record of predation. Paleontological Society Papers No. 8.Google Scholar
Kowalewski, M., Dulai, A., and Fürsich, F. T. 1998. A fossil record full of holes: the Phanerozoic history of drilling predation. Geology 26:10911094.Google Scholar
Kröger, B. 2000. Schalenverletzungen an jurassischen Ammoniten—ihre paläobiologische und paläoökologische Aussagefähigkeit. Berliner Geowissenschaftliche Abhandlungen, Reihe E 33:197.Google Scholar
Leighton, L. R. 1999. Possible latitudinal predation gradient in middle Paleozoic oceans. Geology 27:4750.2.3.CO;2>CrossRefGoogle Scholar
Madin, J., Alroy, J., Aberhan, M., Fürsich, F., Kiessling, W., Kosnik, M., Patzkowsky, M., and Wagner, P. 2004. On the association between macroecology and macroevolution. Geological Society of America Abstracts with Programs 36(5):19.Google Scholar
Martin, R. E. 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia 26:179194.Google Scholar
McCall, P. L., and Tevesz, M. J. S., eds. 1982. Animal-sediment relations: the biogenic alteration of sediments. Plenum, New York.Google Scholar
Miller, A. I. 1990. Bivalves. Pp. 143161 in McNamara, K. J., ed. Evolutionary trends. Belhaven, London.Google Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.Google Scholar
Pawlik, J. R. 1993. Marine invertebrate chemical defenses. Chemical Reviews 93:19111922.Google Scholar
Rees, P. M., Ziegler, A. M., and Valdes, P. J. 2000. Jurassic phytogeography and climates: new data and model comparisons. Pp. 297318 in Huber, B. T., MacLeod, K. G., and Wing, S. L., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
Rhoads, D. C., and Young, D. K. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. Journal of Marine Research 28:150178.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:1922.Google Scholar
Sepkoski, J. J. Jr.. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., and Droser, M. L. 1991. Secular changes in Phanerozoic event bedding and the biological overprint. Pp. 298312 in Einsele, G., Ricken, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer, Berlin.Google Scholar
Skelton, P. W., Crame, J. A., Morris, N. J. and Harper, E. M. 1990. Adaptive divergence and taxonomic radiation in post-Palaeozoic bivalves. In Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Systematics Association Special Volume 42:91117. Clarendon, Oxford.Google Scholar
Solan, M., Cardinale, B. J., Downing, A. L., Engelhardt, K. A. M., Ruesink, J. L., and Srivastava, D. S. 2004. Extinction and ecosystem function in the marine benthos. Science 306:11771180.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. Journal of Paleontology 42:214229.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209250 in Hallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144:319.CrossRefGoogle Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458461.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Thompson, J. N. 2005. The geographic mosaic of coevolution. University of Chicago Press, Chicago.Google Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous floras and climates of the earth. Cambridge University Press, Cambridge.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Goddéris, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18 evolution of Phanerozoic seawater. Chemical Geology 161:5988.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation. Princeton University Press, Princeton, N.J. Google Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.Google Scholar
Vermeij, G. J. 2002. Evolution in the consumer age: predators and the history of life. Pp. 375393 in Kowalewski, and Kelley, 2002.Google Scholar
Vermeij, G. J., and Leighton, L. R. 2003. Does global diversity mean anything? Paleobiology 29:37.2.0.CO;2>CrossRefGoogle Scholar
Vermeij, G. J., Schindel, D. E., and Zipser, E. 1981. Predation through geological time: evidence from gastropod shell repair. Science 214:10241026.CrossRefGoogle ScholarPubMed
Walker, S. E., and Brett, C. E. 2002. Post-Paleozoic patterns in marine predation: was there a Mesozoic and Cenozoic marine predatory revolution? Pp. 119193 in Kowalewski, and Kelley, 2002.Google Scholar
Ziegler, A. M., Eshel, G., Rees, P. M., Rothfus, T. A., Rowley, D. B., and Sunderlin, D. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia 36:227254.Google Scholar