Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:54:58.868Z Has data issue: false hasContentIssue false

Testing evolutionary constraint hypotheses with early Paleozoic gastropods

Published online by Cambridge University Press:  08 February 2016

Peter J. Wagner*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, pjw1@midway.uchicago.edu

Abstract

The evolution of higher taxa among early Paleozoic gastropods is similar to that among early metazoans as a whole, as higher taxa diversified rapidly and early. There are two issues pertinent to this pattern. First, were greater morphologic changes concentrated in the early phases of evolution? Second, does the pattern better fit models of increasing phylogenetic constraints or increasing ecologic restrictions? This paper presents a phylogeny-based method designed to test whether amounts of morphologic evolution decreased over time. It also explores whether the data better fits models of increasing phylogenetic (i.e., developmental or genetic) constraint or increasing ecologic restriction. Two metrics of morphologic separation (i.e., the morphologic difference between sister-species) are used: (1) Euclidean distance in morphospace and (2) transition magnitude. The latter metric is calculated by a multivariate analysis of sister-species contrasts, which determines both types and magnitudes of morphologic transitions. The advantage of using transition magnitudes is that it balances the effects of transitions that either affect more morphometric characters or occur more frequently. Both metrics indicate that larger morphologic separations between sister-species were concentrated early in gastropod evolution. Among gastropods, gross shell morphology often reflects basic trophic strategy and function whereas basic internal anatomy does not. Transition magnitudes can be broken down into transitions associated with differences in basic trophic strategies and shell functional biology (“external”), and those associated with differences in basic internal anatomy (“internal”). Internal transition magnitudes show a highly significant decrease over time (p < 10–04) whereas external transition magnitudes show a much less significant decrease over time (p < 0.10) and no significant decrease after the earliest Ordovician (p ≅ 0.50). The results therefore suggest that increasing phylogenetic constraints played a greater role in the early evolution of gastropods than did increasing ecologic ones.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. 1982. Developmental constraints in evolutionary processes. Pp. 313332in Bonner, J. T., ed. Evolution and development. Springer, Berlin.CrossRefGoogle Scholar
Allmon, W. D., Erwin, D. H., Linsley, R. M., and Morris, P. J. 1992. Trophic level and evolution in Paleozoic gastropods. P. 3in Lidgard, S. and Crane, P. R., eds. North American Paleontological Convention V—Abstracts with Program. The Paleontological Society, Knoxville, Tenn.Google Scholar
Alroy, J. 1994. Appearance event ordination: a new biochronologic method. Paleobiology 20:191207.CrossRefGoogle Scholar
Anstey, R. L., and Pachut, J. L. 1992. Cladogenesis and speciation in early bryozoans. Geological Society of America Abstracts with Programs 24:A139.Google Scholar
Anstey, R. L., and Pachut, J. L. 1995. Phylogeny, diversity history and speciation in Paleozoic bryozoans. Pp. 239284in Erwin, D. H. and Anstey, R. L., eds. New approaches to studying speciation in the fossil record. Columbia University Press, New York.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in Valentine, 1985.Google Scholar
Bieler, R. 1992. Gastropod phylogeny and systematics. Annual Review of Ecology and Systematics 23:211238.CrossRefGoogle Scholar
Bookstein, F. L. 1989. Principal warps: thin plate splines and the decomposition of deformations. IEEE Transaction on Pattern Analysis and Machine Intelligence 11:567585.CrossRefGoogle Scholar
Bookstein, F. L. 1990. Higher-order features of shape change for landmark data. Pp. 237250in Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. The University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data—geometry and biology. Cambridge University Press.Google Scholar
Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science 246:241243.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992a. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992b. Cambrian and recent morphological disparity—reply. Science 258:18171818.CrossRefGoogle Scholar
Brooks, D. R., and McLennan, D. A. 1991. Phylogeny, ecology and behavior—a research program in comparative biology. The University of Chicago Press.Google Scholar
Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Paleozoic echinoderms. Pp. 61100in Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Cocks, L. R. M., and Fortey, R. A. 1990. Biogeography of Ordovician and Silurian faunas. Pp. 97104in McKerrow, W. S. and Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography. The Geological Society, London.Google Scholar
Cocks, L. R. M., Holland, C. H., and Rickards, R. B. 1991. A revised correlation of Silurian rocks in the British Isles. Geological Society of London Special Report 21:132.Google Scholar
Conway Morris, S. 1989. Burgess Shale faunas and the Cambrian explosion. Science 246:339346.CrossRefGoogle Scholar
Cooper, R. A., and Lindholm, K. 1990. A precise worldwide correlation of early Ordovician graptolite sequences. Geological Magazine 127:497525.CrossRefGoogle Scholar
Deleporte, P. 1993. Characters, attributes and tests of evolutionary scenarios. Cladistics 9:427432.CrossRefGoogle ScholarPubMed
Erwin, D. H. 1990. A phylogenetic analysis of major Paleozoic gastropod clades. The Geological Society of America Annual Meeting—Abstracts with Programs 22:A265.Google Scholar
Erwin, D. H. 1992. A preliminary classification of evolutionary radiations. Historical Biology 6:2540.CrossRefGoogle Scholar
Erwin, D. H. 1994. Early introduction of major morphological innovations. Acta Palaentologica Polonica 38:281294.Google Scholar
Erwin, D. H., and Signor, P. W. 1992. Extinction in an extinction-resistant clade: the evolutionary history of the Gastropoda. Pp. 152160in Dudley, E. C., ed. The unity of evolutionary biology, Vol. I. Fourth International Congress of Systematic and Evolutionary Biology. Dioscorides,Google Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the Early Paleozoic versus the Mesozoic. Evolution 41:11771186.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
Fisher, D. C. 1986. Progress in organismal design. Pp. 99118in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Fisher, D. C. 1991. Phylogenetic analysis and its implication in evolutionary paleobiology. Pp. 103122in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. The Paleontological Society, Knoxville, Tenn.Google Scholar
Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 39:371382.CrossRefGoogle Scholar
Foote, M. 1991a. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1991b. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, The University of Michigan 28:101140.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Science, U.S.A. 89:73257329.CrossRefGoogle ScholarPubMed
Foote, M. 1994. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Foote, M., and Gould, S. J. 1992. Cambrian and recent morphological disparity. Science 258:1816.CrossRefGoogle ScholarPubMed
Fretter, V. 1964. Observations on the anatomy of Mikadotrochus amabilis Bayer. Bulletin of Marine Science of the Gulf and Caribbean 14:172184.Google Scholar
Fretter, V., and Graham, A. 1962. British prosobranch mollusks, their function, anatomy and ecology. Ray Society, London.Google Scholar
Garland, T. Jr., Harvey, P. H., and Ives, A. R. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41:1832.CrossRefGoogle Scholar
Gilinsky, N. L. 1981. Stabilizing species selection in the Archaeogastropoda. Paleobiology 7:316331.CrossRefGoogle Scholar
Gilinsky, N. L. 1984. Does archaeogastropod respiration fail in turbid water? Paleobiology 10:459468.CrossRefGoogle Scholar
Gittleman, J. L. 1986. Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy 67:2336.CrossRefGoogle Scholar
Gould, S. J. 1989. Wonderful life. Norton, New York.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press.Google Scholar
Harvey, P. H., and Pagel, M. D. 1991. The comparative method in evolutionary biology. Oxford University Press.CrossRefGoogle Scholar
Haszprunar, G. 1988. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies 54:367441.CrossRefGoogle Scholar
Hickman, C. S., and McLean, J. H. 1990. Systematic revision and suprageneric classification of Trochacean gastropods. Science Series No. 35, Natural History Museum of Los Angeles County.Google Scholar
Horný, R. J. 1992. Muscle scars in Sinuites (Mollusca, Gastropoda) from the Lower Ordovician of Bohemia. Casopis Narodni Muzea v Praze, Rada Prirodovêdná 158:79100.Google Scholar
Hughes, N. C. 1991. Morphological plasticity and genetic flexibility in a Cambrian trilobite. Geology 19:913916.2.3.CO;2>CrossRefGoogle Scholar
Hughes, N. C., and Chapman, R. E. 1994. Developmental flexibility in the Silurian trilobite Aulacopleura konincki: implications for the Cambrian Radiation. Geological Society of America Abstracts with Programs 26:A-373.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.CrossRefGoogle ScholarPubMed
Jackson, D. A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:22042215.CrossRefGoogle Scholar
Jöreskog, K. G., Klovan, J. E., and Reyment, R. A. 1976. Geological factor analysis. Elsevier, Amsterdam.Google Scholar
Kauffman, S. A. 1993. The origins of order. Oxford University Press.CrossRefGoogle Scholar
Kitchell, J. A., and Carr, T. R. 1985. Nonequilibrium model of diversification: faunal turnover dynamics. Pp. 277309in Valentine, 1985.Google Scholar
Kluge, A. G., and Wolf, A. J. 1993. Cladistics: what's in a word? Cladistics 9:183199.CrossRefGoogle ScholarPubMed
Knight, J. B. 1952. Primitive fossil gastropods and their bearing on gastropod classification. Smithsonian Miscellaneous Collections 117:156.Google Scholar
Knight, J. B., Cox, L. R., Batten, R., and Yochelson, E. 1960. Systematic descriptions. Pp. 169324in Moore, R. C., ed. Treatise on invertebrate paleontology. Part I. Mollusca 1. University of Kansas Press, Lawrence.Google Scholar
Lindberg, D. R., and Ponder, W. F. 1991. A phylogenetic analysis of the Gastropoda. Geological Society of America Abstracts with Programs 23:A 160A 161.Google Scholar
Linsley, R. M. 1977. Some laws of gastropod shell form. Paleobiology 3:196206.CrossRefGoogle Scholar
Linsley, R. M. 1978a. Locomotion rates and shell form in the Gastropoda. Malacologia 17:193206.Google Scholar
Linsley, R. M. 1978b. Shell form and the evolution of gastropods. American Scientist 66:432441.Google Scholar
Linsley, R. M., and Kier, W. M. 1984. The Paragastropoda: a proposal for a new class of Paleozoic Mollusca. Malacologia 25:241254.Google Scholar
Losos, J. B. 1990. A phylogenetic analysis of character displacement in Caribbean Anolis lizards. Evolution 44:558569.CrossRefGoogle ScholarPubMed
Maddison, W. P. 1989. Reconstructing character evolution on polytomous cladograms. Caldistics 5:365377.CrossRefGoogle ScholarPubMed
Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40:304314.CrossRefGoogle Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
McLean, J. H. 1981. The Galapagos rift limpet Neomphalus: relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation. Malacologia 21:291336.Google Scholar
McNair, C. G., Kier, W. M., LaCroix, P. D., and Linsley, R. M. 1981. The functional significance of aperture form in gastropods. Lethaia 14:6370.CrossRefGoogle Scholar
McShea, D. W. 1993. Arguments, tests, and the Burgess Shale—a commentary on the debate. Paleobiology 19:399402.CrossRefGoogle Scholar
Morris, N. J., and Cleevely, R. J. 1981. Phanerotinus cristatus (Phillips) and the nature of euomphalacean Gastropods, Molluscans. Bulletin of the British Museum of Natural History (Geology) 35:195212.Google Scholar
Morris, P. J. 1991. Functional morphology and phylogeny: an assessment of monophyly in the Kingdom Animalia and Paleozoic nearly-planispiral snail-like mollusks. Ph.D. dissertation. Harvard University, Cambridge, Mass.Google Scholar
Neuman, R. B., and Harper, D. A. T. 1992. Paleogeographic significance of Arenig-Llanvirn Toquima-Table Head and Celtic brachiopod assemblages. Pp. 241254in Webby, B. D. and Laurie, J. R., eds. Global perspectives on Ordovician geology. Balkema, Rotterdam.Google Scholar
Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:3552.Google Scholar
Owen, A. W., Bruton, D. L., Bockelie Fredrik, J., and Bockelie, T. G. 1990. The Ordovician successions of the Oslo Region, Norway. Norges Geologiskes Undersøkelse Special Publication 4:354.Google Scholar
Paul, C. R. C. 1977. Evolution of primitive echinoderms. Pp. 123158in Hallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Paul, C. R. C. 1991. The functional morphology of gastropod apertures. Pp. 127140in Schmidt-Kittler, N. and Vogel, K., eds. Constructional morphology and evolution. Springer, Berlin.CrossRefGoogle Scholar
Peel, J. S. 1984. Autecology of Silurian gastropods and monoplacophorans. Special Papers in Palaeontology 32:165182.Google Scholar
Peel, J. S. 1991. The classes Tergomya and Helcionelloida, and early molluscan evolution. Grønlands Geologiske Undersøgelse Bulletin 161:1165.Google Scholar
Purchon, R. D. 1977. The biology of the Mollusca, 2d ed. Pergamon, London.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.CrossRefGoogle Scholar
Ridley, M. 1993. Analysis of the Burgess Shale. Paleobiology 19:519521.CrossRefGoogle Scholar
Ross, R. J. Jr., Adler, F. J., Amsden, T. W., Bergström, D., Bergström, S. M., Carter, C., Churkin, M., Cressman, E. A., Derby, J. R., Dutro, J. T. Jr., Ethington, R. L., Finney, S. C., Fisher, D. W., Fisher, J. H., Harris, A. G., Hintze, L. F., Ketner, K. B., Kolata, K. L., Landing, E., Neuman, R. B., Sweet, W. C., Pojeta, J. Jr., Potter, A. W., Rader, E. K., Repetski, J. E., Shaver, R. H., Thompson, T. L., and Webers, G. F. 1982. The Ordovician System in the United States. International Union of Geological Sciences Publication 12:173.Google Scholar
Roth, V. L. 1993. On three-dimensional morphometrics, and on the identification of landmark points. Pp. 4161in Marcus, L. F., Bello, E. and García-Valdescasa, A., eds. Contributions to morphometrics. Museo Nacional de Ciencias Naturales CSIC, Madrid.Google Scholar
Runnegar, B. 1981. Muscle scars, shell form and torsion in Cambrian and Ordovician univalved molluscs. Lethaia 14:311322.CrossRefGoogle Scholar
Runnegar, B. 1987. Rates and modes of evolution in the Mollusca. Pp. 3960in Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Schindel, D. E. 1990. Unoccupied morphospace and the coiled geometry of gastropods: architectural constraint or geometric covariation? Pp. 270304in Ross, R. M. and Allmon, W. D., eds. Causes of evolution—a paleontological perspective. The University of Chicago Press.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1991. A model of onshore-offshore changes in faunal diversity. Paleobiology 17:5877.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. Pp. 153190in Valentine, 1985.Google Scholar
Signor, P. W., and Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology 20:297319.CrossRefGoogle Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31:799828.Google Scholar
Smith, L. H. 1994. Fluctuating asymmetry and development stability in Cambrian and Ordovician trilobites. Geological Society of America Abstracts with Program 26:A-373.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2d ed.W. H. Freeman, New York.Google Scholar
Tracey, S., Todd, J. A., and Erwin, D. H. 1993. Mollusca: Gastropoda. Pp. 131167in Benton, M. J., ed. The fossil record 2. Chapman and Hall, London.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology 6:444450.CrossRefGoogle Scholar
Valentine, J. W., ed. 1985. Phanerozoic diversity patterns—profiles in macroevolution. Princeton University Press, New Jersey.Google Scholar
Valentine, J. W. 1986. Fossil record of the origin of Baupläne and its implications. Pp. 209222in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Valentine, J. W., and Campbell, C. A. 1975. Genetic regulation and the fossil record. American Scientist 63:673680.Google ScholarPubMed
Valentine, J. W. and Erwin, D. H. 1987. Interpreting great developmental experiments: the fossil record. Pp. 71107in Raff, R. A. and Raff, E. C., eds. Development as an evolutionary process. Liss, New York.Google Scholar
Valentine, J. W., and Walker, T. D. 1986. Diversity trends within a model taxonomic hierarchy. Physica 22:3142.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and escalation—an ecological history of life. Princeton University Press, New Jersey.CrossRefGoogle Scholar
Wagner, P. J. 1992. Phylogenetics of the early Paleozoic Archaeogastropoda. Pp. 300in Lidgard, S. and Crane, P. R., eds. Fifth North American Paleontological Convention. The Paleontological Society, Knoxville, Tenn.Google Scholar
Wagner, P. J. 1995. Morphologic diversification of early Paleozoic “archaeogastropods.” Pp. 161169in Taylor, J., ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press.CrossRefGoogle Scholar
Wagner, P. J., and Erwin, D. H. 1995. Phylogenetic tests of speciation hypotheses. Pp. 87122in Erwin, D. H. and Anstey, R. L., eds. New approaches to studying speciation in the fossil record. Columbia University Press, New York.Google Scholar
Wenz, W. 1938. Gastropoda. Bonntraeger, Berlin.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93131.CrossRefGoogle Scholar
Wingstrand, K. G. 1985. On the anatomy and relationships of Recent Monoplacophora. Galathea Report 16:194.Google Scholar
Wright, S. 1982. Character change, speciation, and the higher taxa. Evolution 36:427443.CrossRefGoogle ScholarPubMed
Yonge, C. M. 1947. The pallial organism in aspidobranch Gastropoda and their evolution throughout the Mollusca. Philosophical Transactions of the Royal Society of London 232B:443518.Google Scholar