Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:36:57.584Z Has data issue: false hasContentIssue false

Stratophenetic tracing of phylogeny using SIMCA pattern recognition technique: a case study of the late Neogene planktic foraminifera Globoconella clade

Published online by Cambridge University Press:  08 February 2016

Kuo-Yen Wei*
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06511-8130

Abstract

The Plio-Pleistocene planktic foraminiferal sequence of the Globorotalia (Globoconella) puncticulata-inflata clade in Deep Sea Drilling Project Site 588, dated at 4.36 Ma to 0.05 Ma, records the branching history of the G. inflata lineage from the ancestral G. puncticulata lineage. The gradational nature of the divergence and the enormous morphological variability inherent in the G. inflata lineage have elicited different views on taxonomy and phylogeny of this clade. A pattern recognition technique, soft independent modeling of class analog (SIMCA), was used as an objective quantitative stratophenetic methodology to reconstruct the phylogenetic history.

Typical specimens of two species, G. puncticulata and G. inflata, were identified from a stratigraphic level dated at 2.76 Ma. Principal component models were built to characterize the morphometric patterns of the two morphotypes using SIMCA. The Globoconella specimens of the next lower and higher adjacent stratigraphic levels were evaluated against the models and classified into one of the two morphotypes. The newly classified specimens were then used to build new models for further tracing of lineages in lower and upper sections, respectively. Progression of such training and classification procedures through stratigraphic intervals resulted in a reconstruction of the evolutionary patterns of the two lineages. Cladogenesis gave rise to the descendant lineage, G. inflata, at about 3.5 Ma. The two co-existing species, G. inflata and G. puncticulata, differ only in size and show similarity in most characters at the beginning of their divergence. Other characters began to diverge later, at various rates. The gradients between planktic and benthic foraminiferal δ18O values show a continuous increase during the late Pliocene. The succession from G. puncticulata to G. inflata during the same time correlates with the progressively increased vertical stratification in temperature of surface waters. Globorotalia puncticulata became extinct at 2.35 Ma when the temperature gradient further increased, corresponding to the onset of extensive glaciation in the Northern Hemisphere.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aubry, M.-P. 1988. Phylogeny of the Cenozoic calcareous nannoplankton genus Helicosphaera. Paleobiology 14:6480.CrossRefGoogle Scholar
Bandy, O. L. 1975. Messinian evaporite deposition and the Miocene/Pliocene boundary, Pasquasia-Capodarso Section, Sicily. Pp. 4963in Saito, T. and Burckle, L. H., eds. Late Neogene epoch boundaries. American Museum of Natural History, Micropaleontology Press, New York.Google Scholar
Barton, C. E., and Bloemendal, J. 1986. Paleomagnetism of sediments collected during Leg 90, southwest Pacific. Pp. 12731316in Kennett, and von der Borch, et al. 1986.Google Scholar
, A. W. H. 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. Pp. 1100in Ramsay, T. S., ed. Oceanic micropaleontology, Volume 1. Academic Press, London.Google Scholar
, A. W. H. 1980. Gametogenic calcification in a spinose planktonic foraminifera, Globigerinoides sacculifer (Brady). Marine Micropaleontology 5:283310.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., and Van Couvering, J. A. 1985. Neogene geochronology and chronostratigraphy. Pp. 211260in Snelling, N. J., ed. The chronology of the geological record. Geological Society of London, London.Google Scholar
Cheetham, A. E., and Hayek, L.-A. C. 1988. Phylogeny reconstruction in the Neogene bryozoan Metrarabdotos: a paleontological evaluation of methodology. Historical Biology 1:6583.CrossRefGoogle Scholar
Cifelli, R., and Scott, G. 1986. Stratigraphic record of the Neogene globorotalid radiation (planktonic Foraminiferida). Smithsonian Institution Press, Washington, D.C.CrossRefGoogle Scholar
Eade, J. V. 1973. Geographical distribution of living planktonic foraminifera in the Southwest Pacific. Pp. 249256in Fraser, R., ed. Oceanography of the south Pacific. New Zealand National Commission for UNESCO, Willington.Google Scholar
Elmstrom, K. M. 1985. Late Neogene paleoceanography of the Southwest Pacific: from oxygen and carbon and planktonic foraminiferal faunal evidence of DSDP Sites 588, 590A, and 284. Master's thesis. University of Rhode Island, Kingston.Google Scholar
Elmstrom, K. M., and Kennett, J. P. 1986. Late Neogene paleoceanographic evolution of Site 590: southwest Pacific. Pp. 13611381in Kennett, and von der Borch, et al. 1986.Google Scholar
Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenetics, London 7:179188.Google Scholar
Gingerich, P. D. 1979. The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology. Pp. 4177in Cracraft, J. and Eldredge, N., eds. Phylogenetics analysis and paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Gingerich, P. D. 1990. Taxonomy and phylogeny in fossils: stratophenetics. Pp. 4177in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology: a synthesis. Blackwell Scientific, Oxford.Google Scholar
Gradstein, F. 1974. Mediterranean Pliocene Globorotalia: a biometrical approach. Krips Repro, Meppel.Google Scholar
Heath, R. A. 1985. A review of the physical oceanography of the seas around New Zealand. New Zealand Journal of Marine and Fresh Water Research 19:79124.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., Breitinger, I., and Deuser, W. G. 1985. Field and laboratory studies on the ontogeny and ecology of some globorotalid species from the Sargasso Sea off Bermuda. Journal of Foraminiferal Research 15:254272.CrossRefGoogle Scholar
Hodell, D. A., and Kennett, J. P. 1986. Late Miocene-early Pliocene stratigraphy and paleoceanography of the south Atlantic and southwest Pacific oceans: a synthesis. Paleoceanography 1:285311.CrossRefGoogle Scholar
Hoffman, A., and Reif, W. E. 1990. On the study of evolution in species-level lineages in the fossil record: controlled methodological sloppiness. Palaontologische Zeitschrift 64:514.CrossRefGoogle Scholar
Hornibrook, N. de B. 1981. Globorotalia (planktonic foraminifera) in the late Pliocene and early Pleistocene of New Zealand. New Zealand Journal of Geology and Geophysics 24:263292.CrossRefGoogle Scholar
Hornibrook, N. de B. 1982. Late Miocene to Pleistocene Globorotalia (foraminifera) from Deep Sea Drilling Project Leg 29, Site 284, Southwest Pacific. New Zealand Journal of Geology and Geophysics 25:8399.CrossRefGoogle Scholar
Hornibrook, N. de B., Brazier, R. C., and Strong, C. P. 1989. Manual of New Zealand Permian to Pleistocene foraminiferal biostratigraphy. New Zealand Geological Survey, Lower Hutt.Google Scholar
Hoskins, R. H. 1990. Planktic foraminiferal correlation of the late Pliocene to early Pleistocene of DSDP Sites 284 and 593 (Challenger Plateau) with New Zealand Stages. New Zealand Geological Survey Report PAL 149.Google Scholar
Kennett, J. P. 1986. Miocene to early Pliocene oxygen and carbon isotope stratigraphy in the southwest Pacific, Deep Sea Drilling Project Leg 90. Pp. 13831411in Kennett, and von der Borch, et al. 1986.Google Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. An atlas of Neogene planktonic foraminifera: phylogenetic approach. Hutchinson and Ross, Stroudsburg.Google Scholar
Kennett, J. P., and von der Borch, C. C. 1986. Southwest Pacific Cenozoic paleoceanography. Pp. 14931517in Kennett, and von der Borch, et al. 1986.Google Scholar
Kennett, J. P., and von der Borch, C. C. et al., eds. 1986. Initial reports of the Deep Sea Drilling Project, Vol. 90. U.S. Government Printing Office, Washington, D.C.Google Scholar
Lohman, W. H. 1986. Calcareous nannoplankton biostratigraphy of the southern Coral Sea, Tasman Sea, and southwest Pacific Ocean, Deep Sea Drilling Project Leg 90: Neogene and Quaternary. Pp. 763793in Kennett, and von der Borch, et al. 1986.Google Scholar
Lohmann, G. P., and Schweitzer, P. N. 1990. Globorotalia truncatulinoides' growth and chemistry as probes of the past thermocline. I. Shell size. Paleoceanography 5:5575.CrossRefGoogle Scholar
Maiya, S. T., Saito, T., and Sato, T. 1976. Late Cenozoic planktonic foraminiferal biostratigraphy of northwest Pacific sedimentary sequences. Pp. 395422in Takayanagi, Y. and Saito, T., eds. Progress in micropaleontology. American Museum of Natural History, New York.Google Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage: DSDP Site 284, southwest Pacific. Paleobiology 7:230240.CrossRefGoogle Scholar
Malmgren, B. A., and Kennett, J. P. 1982. The potential morphometrically based phylo-zonation: application of a late Cenozoic foraminiferal lineage. Marine Micropaleontology 7:285296.CrossRefGoogle Scholar
Nelson, C. S. 1986. Bioturbation in middle bathyal, Cenozoic nannofossil oozes and chalks, southwest pacific. Pp. 11891200in Kennett, and von der Borch, et al. 1986.Google Scholar
Rea, D. K., and Schrader, H. 1985. Late Pliocene onset of glaciation: ice-rafting and diatom stratigraphy of North Pacific DSDP cores. Palaeogeography, Palaeoclimatology, Palaeoecology 49:313325.CrossRefGoogle Scholar
Reyment, R. A. 1991. Multidimensional paleobiology. Pergamon Press, Oxford.Google Scholar
Reyment, R. A., Blackith, R. E., and Campbell, N. A. 1984. Multivariate morphometrics, 2d ed.Academic Press, New York.Google Scholar
Rohlf, F. J., and Bookstein, F. L. 1990. Proceedings of the Michigan Morphometrics Workshop. Special Publication No. 2. The University Museum of Zoology, Ann Arbor.Google Scholar
Ruddiman, W. F., and Raymo, M. E. 1988. Northern hemisphere climate regimes during the last 3 Ma: possible tectonic connections. Philosophical Transaction Royal Society London, B 318:411430.Google Scholar
Sanfilippo, A., and Riedel, W. R. 1992. The origin and evolution of Pterocorythidae (Radiolaria): a Cenozoic phylogenetic study. Micropaleontology 38:136.CrossRefGoogle Scholar
Shackleton, N. J., Backman, J., Zimmerman, H. et al. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature (London) 307:620623.CrossRefGoogle Scholar
Spaak, P. 1981. The distribution of the Globorotalia inflata group in the Mediterranean Pliocene. Proceedings of the Koninklike Netherlandse Akademie van Wetenschappen B84:201215.Google Scholar
Spaak, P. 1983. Accuracy in correlation and ecological aspects of the planktonic foraminiferal zonation of the Mediterranean Pliocene. Utrecht Micropaleontology Bulletin 28:1159.Google Scholar
Stein, R. 1986. Late Neogene evolution of paleoclimate and paleoceanographic circulation in the Northern and Southern Hemisphere—a comparison. Geologische Rundschau 75:125138.CrossRefGoogle Scholar
Thayer, F. 1973a. Globorotalia inflata triangula, a new planktonic foraminiferal subspecies. Journal of Foraminiferal Research 3:199201.CrossRefGoogle Scholar
Thayer, F. 1973b. Globorotalia truncatulinoides datum plane: evidence for a Gauss (Pliocene) age in subantarctic cores. Nature (London) 241:143145.Google Scholar
Todd, R. 1958. Foraminifera from west Mediterranean deep-sea cores. Swedish Deep-Sea Expedition 1947-1948, Reports. 8. Goteborg, Sweden.Google Scholar
Wei, K.-Y. 1987a. Multivariate morphometric differentiation of chronospecies in the late Neogene planktonic foraminiferal lineage Globoconella. Marine Micropaleontology 12:183202.CrossRefGoogle Scholar
Wei, K.-Y. 1987b. Tempo and mode of evolution in Neogene planktonic foraminifera: taxonomic and morphometric evidence. Ph.D. dissertation. University of Rhode Island, Kingston, Rhode Island, 397 pp.Google Scholar
Wei, K.-Y. 1994. Allometric heterochrony in the Pliocene-Pleistocene planktic foraminiferal clade Globoconella. Paleobiology 20:6684.CrossRefGoogle Scholar
Wei, K.-Y.In press. Statistical pattern recognition in paleontology using SIMCA-MACUP. Journal of Paleontology.Google Scholar
Wei, K.-Y., and Kennett, J. P. 1988. Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminifera clade Globoconella. Paleobiology 14:345363.CrossRefGoogle Scholar
Wei, K.-Y., Zhang, Z.-W., and Wray, C. 1992. Shell ontogeny of Globorotalia inflata (I): growth dynamics and ontogenetic stages. Journal of Foraminiferal Research 22:318–237.CrossRefGoogle Scholar
Wold, S. 1976. Pattern recognition by means of disjoint principal components models. Pattern Recognition 8:127139.CrossRefGoogle Scholar
Wold, S. 1978. Cross validatory estimation of the number of components in factor and principal models. Technometrics 20:397406.CrossRefGoogle Scholar
Wold, S., and Sjöstrom, M. 1977. Simca: a model for analyzing chemical data in terms of similarity and analogy. Pp. 243252in Kowalski, B. R., ed. Chemometrics: theory and application. American Chemical Society.CrossRefGoogle Scholar
Wold, S., Albano, C., and Dunn, W. J. I. 1984a. Multivariate data analysis in chemistry. Pp. 1795in Kowalski, B. R., ed. Chemometrics. Mathematics and statistics in chemistry. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
Wold, S., Albano, C., and Dunn, W. J. I. et al. 1984b. Modeling data tables by principal components and PLS: class patterns and quantitative predictive relations. Analusis 12:477485.Google Scholar