Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T19:50:32.332Z Has data issue: false hasContentIssue false

Stratigraphic tests of cladistic hypotheses

Published online by Cambridge University Press:  08 February 2016

Peter J. Wagner*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637

Abstract

Cladograms predict the order in which fossil taxa appeared and, thus, make predictions about general patterns in the stratigraphic record. Inconsistencies between cladistic predictions and the observed stratigraphic record reflect either inadequate sampling of a clade's species, incomplete estimates of stratigraphic ranges, or homoplasy producing an incorrect phylogenetic hypothesis. A method presented in this paper attempts to separate the effects of homoplasy from the effects of inadequate sampling. Sampling densities of individual species are used to calculate confidence intervals on their stratigraphic ranges. The method uses these confidence intervals to test the order of branching predicted by a cladogram. The Lophospiridae (“Archaeogastropoda”) of the Ordovician provide a useful test group because the clade has a good fossil record and it produced species over a long time. Confidence intervals reject several cladistic hypotheses that postulate improbable “ghost lineages.” Other hypotheses are acceptable only with explicit ancestor-descendant relationships. The accepted cladogram is the shortest one that stratigraphic data cannot reject. The results caution against evaluating phylogenetic hypotheses of fossil taxa without considering both stratigraphic data and the possible presence of ancestral species, as both factors can affect interpretations of a clade's evolutionary dynamics and its patterns of morphologic evolution.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allmon, W. D. 1989. Paleontological completeness of the record of lower Tertiary mollusks, U.S. Gulf and Atlantic coastal plains: implication for phylogenetic studies. Historical Biology 3:141158.CrossRefGoogle Scholar
Allmon, W. D. 1994. Patterns and process of heterochrony in lower Tertiary turritelline gastropods, U.S. Gulf and Atlantic coastal plains. Journal of Paleontology 68:8095.CrossRefGoogle Scholar
Alroy, J. 1995. Continuous track analysis: a new phylogenetic and biogeographic method. Systematic Biology 44(in press).CrossRefGoogle Scholar
Anstey, R. L., and Pachut, J. L. 1992. Cladogenesis and speciation in early bryozoans. Geological Society of America Abstracts with Programs 24:A139.Google Scholar
Anstey, R. L., and Pachut, J. L. 1995. Phylogeny, diversity history and speciation in Paleozoic bryozoans. In Erwin, and Anstey, 1995.Google Scholar
Archie, J. W. 1989. Homoplasy excess ratios: new indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Systematic Zoology 38:253269.CrossRefGoogle Scholar
Barnes, C. R., Norford, B. S., and Skevington, D. 1981. The Ordovician system in Canada. International Union of Geological Sciences Publication 8:127.Google Scholar
Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science 246:16701673.CrossRefGoogle ScholarPubMed
Brooks, D. R., and McLennan, D. A. 1991. Phylogeny, ecology and behavior—a research program in comparative biology. The University of Chicago Press.Google Scholar
Bodenbender, B. E. 1994. Stratocladistic reconstruction of Mastoid evolutionary history. Geological Society of America Abstracts with Program 26:A-427.Google Scholar
Campbell, K. S. W., and Barwick, R. E. 1988. Geological and paleontological information and phylogenetic hypotheses. Geological Magazine 125:207227.CrossRefGoogle Scholar
Campbell, K. S. W., and Barwick, R. E. 1990. Paleozoic dipnoan phylogeny: functional complexes and evolution without parsimony. Paleobiology 16:143169.CrossRefGoogle Scholar
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology 12:190202.CrossRefGoogle Scholar
Cheetham, A. H., and Hayek, L. A. C. 1988. Phylogeny reconstruction in the Neogene bryozoan Metrabdotos: a paleontologic evaluation of methodology. Historical Biology 1:6583.CrossRefGoogle Scholar
Cracraft, J. 1981. Pattern and process in paleobiology: the role of cladistics in systematic paleontology. Paleobiology 7:456468.CrossRefGoogle Scholar
Cronquist, A. 1987. A botanical critique of cladism. The Botanical Review 53:152.CrossRefGoogle Scholar
Donoghue, M. J., Doyle, J. A., Gauthier, J., Kluge, A. G., and Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics 20:431460.CrossRefGoogle Scholar
Edgecombe, G. D. 1992. Trilobite phylogeny and the Cambrian-Ordovician “event”: a cladistic reappraisal. Pp. 144177in Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Eldredge, N. 1971. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution 25:156167.CrossRefGoogle ScholarPubMed
Eldredge, N., and Cracraft, J. 1980. Phylogenetic patterns and the evolutionary process—methods and theory in comparative biology. Columbia University Press, New York.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. Freeman, San Francisco.Google Scholar
Engelmann, G. F., and Wiley, E. O. 1977. The place of ancestor-descendant relationships in phylogeny reconstruction. Systematic Zoology 26:111.CrossRefGoogle Scholar
Erwin, D. H., and Anstey, R. L. 1995. New approaches for studying speciation in the fossil record. Columbia University Press, New York.Google Scholar
Farris, J. S. 1983. The logical basis of phylogenetic analysis. Pp. 736in Platnick, N. L. and Funk, V. A., eds. Advances in cladistics. Columbia University Press, New York.Google Scholar
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27:401410.CrossRefGoogle Scholar
Fisher, D. C. 1988. Stratocladistics: integrating stratigraphic and morphologic data in phylogenetic inference. Geological Society of America Abstracts with Programs 20:A186.Google Scholar
Fisher, D. C. 1991. Phylogenetic analysis and its implication in evolutionary paleobiology. Pp. 103122in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. The Paleontological Society, Knoxville, Tenn.Google Scholar
Fisher, D. C. 1994. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process. Pp. 133171in Grande, L. and Rieppel, O., eds. Interpreting the hierarchy of nature—from systematic patterns to evolutionary theories. Academic Press, San Diego, Calif.Google Scholar
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105209.CrossRefGoogle ScholarPubMed
Geary, D. H. 1988. Heterochrony in gastropods—a paleontological perspective. Pp. 183196in McKinney, M., ed. Heterochrony in evolution. Plenum, New York.CrossRefGoogle Scholar
Goodfriend, G. A. 1983. Some new methods for morphometric analysis of gastropod shells. Malacological Review 16:7986.Google Scholar
Goodwin, P. W., and Anderson, E. J. 1985. Punctuated aggradational cycles: a general hypothesis of episodic stratigraphic accumulation. Journal of Geology 93:515533.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, New York.Google Scholar
Harvey, P. H., and Pagel, M. D. 1991. The comparative method in evolutionary biology. Oxford Press.CrossRefGoogle Scholar
Hillis, D. M., Bull, J. J., White, M. E., Badgett, M. R., and Molineux, I. J. 1992. Experimental phylogenetics—generation of a known phylogeny. Science 255:589592.CrossRefGoogle ScholarPubMed
Hillis, D. M., and Huelsenbeck, J. P. 1992. Signal, noise, and reliability in molecular phylogenetic analysis. Journal of Heredity 83:189195.CrossRefGoogle Scholar
Huelsenbeck, J. P. 1991a. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology 40:458469.CrossRefGoogle Scholar
Huelsenbeck, J. P. 1991b. Tree-length distribution skewness: an indicator of phylogenetic information. Systematic Zoology 40:257270.CrossRefGoogle Scholar
Huelsenbeck, J. P., and Hillis, D. M. 1993. Success of phylogenetic methods in the four-taxon case. Systematic Biology 42:247264.CrossRefGoogle Scholar
Hull, D. L. 1983. Karl Popper and Plato's metaphor. Pp. 177189in Platnick, N. L. and Funk, V. A., eds. Advances in cladistics. Columbia University Press, New York.Google Scholar
Kim, J., Rohlf, F. J., and Sokal, R. R. 1993. The accuracy of phylogenetic estimation using the neighbor-joining method. Evolution 47:471486.Google ScholarPubMed
Knight, J. B. 1952. Primitive fossil gastropods and their bearing on gastropod classification. Smithsonian Miscellaneous Collections 117:156.Google Scholar
Knight, J. B., Cox, L. R., Batten, R., and Yochelson, E. 1960. Systematic descriptions. Pp. 169324in Moore, R. C., ed. Treatise on invertebrate paleontology. Part I. Mollusca 1. University of Kansas Press, Lawrence.Google Scholar
Landman, N. H. 1989. Iterative progenesis in Upper Cretaceous ammonites. Paleobiology 15:95117.CrossRefGoogle Scholar
Linsley, R. M. 1977. Some laws of gastropod shell form. Paleobiology 3:196206.CrossRefGoogle Scholar
Linsley, R. M. 1978. Locomotion rates and shell form in the Gastropoda. Malacologia 17:193206.Google Scholar
MacFadden, B. J. 1986. Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope's Law, and the evolution of body size. Paleobiology 12:355369.CrossRefGoogle Scholar
Maddison, D. R. 1991. The discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology 40:315328.CrossRefGoogle Scholar
Maddison, W. P. 1989. Reconstructing character evolution on polytomous cladograms. Cladistics 5:365377.CrossRefGoogle ScholarPubMed
Maddison, W. P., and Maddison, D. R. 1992. MacClade, analysis of phylogeny and character evolution. Sinauer, Sunderland, Mass.Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
Marshall, C. R. 1995. Stratigraphy, the true order of species' originations and extinctions, and testing ancestor-descendant hypotheses among Caribbean bryozoans. In Erwin, and Anstey, 1995.Google Scholar
Marshik, P. A. 1993. Confidence intervals on stratigraphic sections with variable fossil preservation. Geological Society of America Annual Meeting Abstracts with Programs 25:A-56.Google Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge.CrossRefGoogle Scholar
McKinney, M. L. 1986. Ecological causation of heterochrony: a test and implications for evolutionary theory. Paleobiology 12:282289.CrossRefGoogle Scholar
McNamara, K. J. 1986. The role of heterochrony in the evolution of Cambrian trilobites. Biological Review 61:121156.CrossRefGoogle Scholar
Mooi, R. 1990. Paedomorphosis, Aristotle's lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology 16:2548.CrossRefGoogle Scholar
Nelson, G., and Platnick, N. 1981. Systematics and biogeography: cladistics and vicariance biology. Columbia University Press, New York.Google Scholar
Nei, M. 1991. Relative efficiencies of different tree-making methods for molecular data. Pp. 90128in Miyamoto, M. M. and Cracraft, J. L., eds. Recent advances in phylogenetic studies of DNA sequences. Oxford University Press.CrossRefGoogle Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118in Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science 293-A:407417.CrossRefGoogle Scholar
Norell, M. A., and Novacek, M. J. 1992a. Congruence between superpositional and phylogenetic patterns: comparing cladistic patterns with fossil records. Cladistics 8:319337.CrossRefGoogle ScholarPubMed
Norell, M. A., and Novacek, M. J. 1992b. The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science 255:16901693.CrossRefGoogle ScholarPubMed
Novacek, M. J. 1992. Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Systematic Biology 41:5873.CrossRefGoogle Scholar
Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:3552.Google Scholar
Patterson, C., and Smith, A. B. 1987. Is the periodicity of extinctions a taxonomic artefact? Nature (London) 330:248251.CrossRefGoogle Scholar
Patterson, C., and Smith, A. B. 1989. Periodicity in extinction: the role of systematics. Ecology 70:802811.CrossRefGoogle Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record. Pp. 75117in Joysey, K. A. and Friday, A. E., eds. Problems of phylogenetic reconstruction. Academic Press, London.Google Scholar
Paul, C. R. C. 1992. The recognition of ancestors. Historical Biology 6:239250.CrossRefGoogle Scholar
Purvis, A., and Garland, T. Jr. 1993. Polytomies in comparative analyses of continuous characters. Systematic Biology 42:569575.CrossRefGoogle Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.CrossRefGoogle Scholar
Rensch, B. 1960. Evolution above the species level. Columbia University Press, New York.Google Scholar
Rohlf, F. J., Chang, W. S., Sokal, R. R., and Kim, J. 1990. Accuracy of estimated phylogenies: effects of tree topology and evolutionary model. Evolution 44:16711684.CrossRefGoogle ScholarPubMed
Ross, R. J. J., et al. 1982. The Ordovician system in the United States. International Union of Geological Sciences Publication 12:173.Google Scholar
Sadler, P. M. 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology 89:569584.CrossRefGoogle Scholar
Sadler, P. M., and Strauss, D. J. 1990. Estimation of completeness of stratigraphical sections using empirical data and theoretical models. Journal of the Geological Society, London 147:471485.CrossRefGoogle Scholar
Sanderson, M. J., and Bharathan, G. 1993. Does cladistic information affect inferences about branching rates? Systematic Biology 42:117.CrossRefGoogle Scholar
Sanderson, M. J., and Donoghue, M. J. 1989. Patterns of variation in levels of homoplasy. Evolution 43:17811795.CrossRefGoogle ScholarPubMed
Signor, P. W. 1985. Real and apparent trends in species richness through time. Pp. 129150in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, N.J.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31:799828.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record—documenting evolutionary patterns. Blackwell, Oxford.CrossRefGoogle Scholar
Smith, A. B., Lafay, B., and Christen, R. 1992. Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Philosophical Transactions of the Royal Society of London B 338:365382.Google ScholarPubMed
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.CrossRefGoogle Scholar
Springer, M., and Lilje, A. 1988. Biostratigraphy and gap analysis: the expected sequence of biostratigraphic events. Journal of Geology 96:228236.CrossRefGoogle Scholar
Stanley, S. M., Wetmore, K. L., and Kennet, J. P. 1988. Macro-evolutionary differences between two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.CrossRefGoogle Scholar
Strauss, D., and Sadler, P. M. 1989a. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.CrossRefGoogle Scholar
Strauss, D., and Sadler, P. M. 1989b. Stochastic models for the completeness of stratigraphic sections. Mathematical Geology 21:3759.CrossRefGoogle Scholar
Suter, S. J. 1993. Stratigraphic ranges as the basis for choosing among equally parsimonious phylogenies: the case of the cassiduloid echinoids. Geological Society of America Abstracts with Programs 25:A105.Google Scholar
Swofford, D. L. 1989. paup: Phylogenetic Analysis Using Parsimony, Version 3.0. Champaign, Ill.Google Scholar
Swofford, D. L. 1991. When are phylogeny estimates from molecular and morphologic data incongruent? Pp. 295–233 in Miyamoto, M. M. and Cracraft, J., eds. Phylogenetic analysis of DNA sequences. Oxford University Press.Google Scholar
Swofford, D. L., and Maddison, W. P. 1987. Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences 87:119229.CrossRefGoogle Scholar
Szalay, F. S. 1977. Ancestors, descendants, sister groups and testing of phylogenetic hypotheses. Systematic Zoology 26:1218.CrossRefGoogle Scholar
Thewissen, J. G. M. 1992. Temporal data in phylogenetic systematics: an example from the mammalian fossil record. Journal of Paleontology 66:17.CrossRefGoogle Scholar
Tofel, J. E., and Bretsky, P. W. 1987. Middle Ordovician Lophospira (Archaeogastropoda) from the Upper Mississippi Valley. Journal of Paleontology 61:700723.CrossRefGoogle Scholar
Ulrich, E. O., and Scofield, W. H. 1897. The Lower Silurian Gastropoda of Minnesota. The Paleontology of Minnesota 3:8131081.Google Scholar
Valentine, J. W. 1989. How good was the fossil record? Clues from the Californian Pleistocene. Paleobiology 15:8394.CrossRefGoogle Scholar
Wagner, P. J. 1992. Phylogenetics of the early Paleozoic Archaeogastropoda. P. 300in Lidgard, S. and Crane, P. R., eds. Fifth North American Paleontological Convention. The Paleontological Society.Google Scholar
Wagner, P. J. 1993. Temporal pattern of morphologic disparity among early Paleozoic “archaeogastropods.” Geological Society of America Annual Meeting Abstracts with Program 25:A51.Google Scholar
Wagner, P. J., and Erwin, D. H. 1995. Phylogenetic tests of speciation hypotheses. In Erwin, and Anstey, 1995.Google Scholar
Williams, A., Strachan, I., Bassett, D. A., Dean, W. T., Ingham, J. K., Wright, A. D., and Whittington, H. B. 1972. A correlation of Ordovician rocks in the British Isles. Special Report of the Geological Society of London 3:174.Google Scholar
Yang, Z. 1986. The Ordovician system. Pp. 7381in Yang, Z., Chang, Y., and Wang, H., eds. The geology of China. Clarendon, Oxford.Google Scholar