Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T00:02:12.590Z Has data issue: false hasContentIssue false

Size and shape in ontogeny and phylogeny

Published online by Cambridge University Press:  08 February 2016

Pere Alberch
Affiliation:
Museum of Vertebrate Zoology and Department of Zoology, University of California, Berkeley, California 94720
Stephen Jay Gould
Affiliation:
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
George F. Oster
Affiliation:
Departments of Entomological Sciences and Zoology, University of California, Berkeley, California 94720
David B. Wake
Affiliation:
Museum of Vertebrate Zoology and Department of Zoology, University of California, Berkeley, California 94720

Abstract

We present a quantitative method for describing how heterochronic changes in ontogeny relate to phyletic trends. This is a step towards creating a unified view of developmental biology and evolutionary ecology in the study of morphological evolution. Using this representation, we obtain a greatly simplified and logical scheme of classification. We believe that this scheme will be particularly useful in studying the data of paleontology and comparative morphology and in the analysis of processes leading to adaptive radiation. We illustrate this scheme by examples drawn from the literature and our own work.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bard, J. B. L. 1977. A unity underlying the different zebra striping patterns. J. Zool., London. 183:527539.Google Scholar
Bertalanffy, L. von. 1960. Principles and theory of growth. Pp. 137260. In: Nowinski, W. W., ed. Fundamental Aspects of Normal and Malignant Growth. Elsevier Publ. Co.Google Scholar
Bonebrake, J. E. and Brandon, R. A. 1971. Ontogeny of cranial ossification in the small-mouthed salamander, Ambystoma texanum (Matthes). J. Morphol. 133:189204.CrossRefGoogle ScholarPubMed
Bookstein, F. L. 1976. The study of shape transformations after D'Arcy Thompson. Mathematical Biosciences. 34:177219.CrossRefGoogle Scholar
Bookstein, F. L. 1978. The measurement of biological shape and shape change. Lecture Notes in Biomathematics. 24:1191.CrossRefGoogle Scholar
Chandebois, R. 1976. Cell sociology: a way of reconsidering the current concepts of morphogenesis. Acta Biotheoretica. 25:71102.CrossRefGoogle ScholarPubMed
Cock, A. G. 1966. Genetical aspects of metrical growth and form in animals. Q. Rev. Biol. 41:131190.CrossRefGoogle ScholarPubMed
DeBeer, G. 1958. Embryos and Ancestors. Third ed.197 pp. Clarendon Press; Oxford.Google Scholar
Ede, D. E. 1971. Control of form and pattern in the vertebrate limb. Symp. Soc. Exp. Biol. 25:235254.Google ScholarPubMed
Erdmann, K. 1933. Zur Entwicklung des knöchern Skelets von Triton und Rana unter besonderer Berücksichtigung der Zeitfolge der Ossifikationen. Zeitschr. Anat. Ent. 101:566651.CrossRefGoogle Scholar
Frazzetta, T. H. 1975. Complex adaptations in evolving populations. 267 pp. Sinauer; Sunderland, Mass.Google Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41:587640.CrossRefGoogle ScholarPubMed
Gould, S. J. 1968. Ontogeny and the explanation of form: an allometric analysis. In: Macurda, D. B., ed. Paleobiological Aspects of Growth and Development. Paleontol. Soc. Mem. 2:8198.CrossRefGoogle Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard Univ. Press; Cambridge, Mass. 501 pp.Google Scholar
Hampé, A. 1959. Contribution à l'étude du développement et de la regulation des déficiences et des excédents dans la patte de l'embryon de poulet. Archs. Anat. Microsc. Morphol. Exp. 48:345478.Google Scholar
Kallman, K. D. and Schreibman, M. P. 1973. A sex-linked gene controlling gonadotrop differentiation and its significance in determining the age of sexual maturation and size of the platyfish, Xiphophorus maculatus. Gen. Comp. End. 21:287304.CrossRefGoogle ScholarPubMed
Keller, R. 1946. Morphogenetische Untersuchungen am Skelett von Siredon mexicanus Shaw mit besonderer Berücksichtigung des Ossifikationsmodus beim neotenen Axolotl. Rev. Suisse Zool. 53:329426.Google Scholar
Kollar, E. J. 1972. The development of the integument: spatial, temporal, and phylogenetic factors. Am. Zool. 12:125135.CrossRefGoogle Scholar
Laird, A. K. 1969. The dynamics of growth. Research/Development. 20:28.Google Scholar
Laird, A. K., Barton, A. D., and Tyler, S. A. 1968. Growth and time: an interpretation of allometry. Growth. 32:347354.Google ScholarPubMed
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution. 30:314334.CrossRefGoogle ScholarPubMed
Lestrel, P. E. 1974. Some problems in the assessment of morphological size and shape differences. Yearbook of Phys. Anthropol. 18:140162.Google Scholar
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution. 3:103124.CrossRefGoogle ScholarPubMed
Oster, G. F. 1977. Lectures in population dynamics. In DiPrima, R., ed. Modern Modeling of Continuum Phenomena, Lectures in Applied Mathematics, Vol. 16. Am. Math. Soc., Providence; Rhode Island.Google Scholar
Oster, G. F. and Rocklin, S. 1979. Optimization models in evolutionary biology. Submitted.Google Scholar
Raikow, R. J. 1975. The evolutionary reappearance of ancestral muscles as developmental anomalies in two species of birds. Condor. 77:514517.CrossRefGoogle Scholar
Slatkin, M. 1970. Selection and polygenic characters. Proc. Nat. Acad. Sci. (U.S.A.) 66:8793.CrossRefGoogle ScholarPubMed
Southwood, T. 1976. Bionomic strategies and population parameters. Pp. 2648. In: May, R., ed. Theoretical Ecology. W. B. Saunders; Philadelphia.Google Scholar
Stearns, S. C. 1976. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51:347.CrossRefGoogle ScholarPubMed
Stearns, S. C. 1977. The evolution of life history traits: a critique of the theory and a review of the data. Ann. Rev. Ecol. Syst. 8:145171.CrossRefGoogle Scholar
Waddington, D. H. 1957. The Strategy of the Genes. Allen and Unwin; London. 262 pp.Google Scholar
Waddington, D. H. 1962. New Patterns in Genetics and Development. Columbia University Press: New York. 271 pp.CrossRefGoogle Scholar
Wake, D. B. 1966. Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. So. Calif. Acad. Sci. 4:1111.Google Scholar
Wake, D. B. and Brame, A. H. 1969. Systematics and evolution of neotropical salamanders of the Bolitoglossa helmrichi group. Contrib. Sci. Nat. Hist. Mus. Los Angeles Co. 175:140.Google Scholar
Wessels, N. 1977. Tissue Interactions in Development. W. A. Benjamin, Inc. 267 pp.Google Scholar
Wilson, A. C., Carlson, S. S., and White, T. J. 1977. Biochemical Evolution. Ann. Rev. Biochem. 46:573639.CrossRefGoogle ScholarPubMed