Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T01:04:36.206Z Has data issue: false hasContentIssue false

The Pattern of Phyletic Speciation

Published online by Cambridge University Press:  08 February 2016

Doug Petry*
Affiliation:
Department of Genetics, University of California, Davis, California 95616

Abstract

Phyletic speciation arising from a shift between adaptive peaks in the selective surface is modeled. At a locus initially monomorphic, a new allele is introduced that triggers phenotypic evolution by making a new adaptive peak available. A phenotypic model is used to describe the evolution of a quantitative character that is important for fitness but not directly affected by the new allele. Recursion equations are derived for both the allele frequency and the mean of the quantitative character. It is shown that the dynamics of the quantitative trait fit a “punctuated equilibrium” pattern of evolution. Phyletic speciation is seen to occur over a time span so short as to make observation of the transition in the fossil record unlikely.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bookstein, F. L., Gingerich, P. D., and Kluge, A. G. 1978. Hierarchical linear modeling of the tempo and mode in evolution. Paleobiology. 4:120134.CrossRefGoogle Scholar
Darlington, P. J. Jr. 1957. Zoogeography: The Geographical Distribution of Animals. John Wiley and Sons; New York.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated Equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. W. H. Freeman and Co.; San Francisco, California.Google Scholar
Falconer, D. S. 1960. Introduction to Quantitative Genetics. The Ronald Press Co.; New York.Google Scholar
Fisher, R. A. 1958. The Genetical Theory of Natural Selection. 2nd ed.Dover; New York.Google Scholar
Gingerich, P. D. 1974. Stratigraphic record of early Eocene Hyopsodus and the geometry of mammalian phylogeny. Nature. 248:107109.CrossRefGoogle Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. Am. J. Sci. 276:128.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 2:115151.CrossRefGoogle Scholar
Imbrie, J. 1957. The species problem with fossil animals. Pp. 125153. In: Mayr, E., ed. The Species Problem. Am. Assoc. Advancement Sci. Washington, D.C.Google Scholar
Kellogg, D. E. and Hays, J. D. 1975a. Microevolutionary patterns in late cenozoic radiolaria. Paleobiology. 1:150160.CrossRefGoogle Scholar
Kellogg, D. E. 1975b. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology. 1:359370.CrossRefGoogle Scholar
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution. 30:314334.CrossRefGoogle ScholarPubMed
Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution. 33:402416.Google ScholarPubMed
Lande, R. 1980. Microevolution in relation to macroevolution. Paleobiology. 6:402416.Google Scholar
Larson, A., Wake, D. B., Maxson, L. R., and Highton, R. 1981. A molecular phylogenetic perspective on the origins of morphological novelties in the salamanders of the tribe Plethodontini (Amphibia, Plethodontidae). Evolution. 35:405422.Google Scholar
Liem, K. F. 1974. Evolutionary strategies and morphological innovations: Cichlid pharyngeal jaws. Syst. Zool. 22:425441.CrossRefGoogle Scholar
Roughgarden, J. 1972. Evolution of niche width. Am. Nat. 106:683718.CrossRefGoogle Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Simon and Schuster; New York.CrossRefGoogle Scholar
Slatkin, M. 1970. Selection and polygenic characters. Proc. Natl. Acad. Sci. 66:8793.CrossRefGoogle ScholarPubMed
Slatkin, M. and Lande, R. 1976. Niche width in a fluctuating environment—density independent model. Am. Nat. 110:3155.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Natl. Acad. Sci. 72:646650.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman and Co.; San Francisco, California.Google Scholar
Templeton, A. 1980. Macroevolution. Evolution. 34:12241227.Google Scholar
Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. 6th Int. Congr. Genet. 1:356366.Google Scholar