Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T06:02:17.014Z Has data issue: false hasContentIssue false

Paleodiet of Lamini camelids (Mammalia: Artiodactyla) from the Pleistocene of southern Brazil: insights from stable isotope analysis (δ13C, δ18O)

Published online by Cambridge University Press:  12 April 2022

Thayara S. Carrasco*
Affiliation:
Laboratório de Estratigrafia e Paleontologia, Instituto de Biociências, Universidade Estadual Paulista, São Vicente, São Paulo 11330-900 Brazil. E-mail: thayaracarrasco@gmail.com, paleonchico@yahoo.com.br
Carolina S. Scherer
Affiliation:
Centro de Ciências Agrárias Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia 44380-000 Brazil. E-mail: carolina.ss@ufrb.edu.br
Ana Maria Ribeiro
Affiliation:
Museu de Ciências Naturais, Secretaria do Meio Ambiente e Infraestrutura, Porto Alegre, Rio Grande do Sul 90690-000 Brazil. E-mail: amaria-ribeiro@sema.rs.gov.br
Francisco S. Buchmann
Affiliation:
Laboratório de Estratigrafia e Paleontologia, Instituto de Biociências, Universidade Estadual Paulista, São Vicente, São Paulo 11330-900 Brazil. E-mail: thayaracarrasco@gmail.com, paleonchico@yahoo.com.br
*
*Corresponding author.

Abstract

Camelids (Camelidae) were a diverse and widely distributed group in South America during the Pleistocene. According to the fossil record, three species inhabited southern Brazil in the recent past: Hemiauchenia paradoxa, Lama guanicoe, and Vicugna vicugna. The analysis of carbon and oxygen stable isotope ratios in bioapatite provides insight into the paleobiology of nonliving animals and the environment they used to inhabit. We applied this tool to investigate the diet of camelids from two geological localities in southern Brazil: Touro Passo and Santa Vitória Formations (H. paradoxa, n = 7; L. guanicoe, n = 6; V. vicugna, n = 4). Carbon stable isotopes from enamel, dentin, and bone indicated that H. paradoxa and L. guanicoe had diets comprising mostly C3 grasses, but the latter showed a broader diet due to one individual with a mixed diet, whereas V. vicugna had a mixed C3–C4 diet. These different foraging behaviors may have minimized interspecific competition and favored niche partitioning and the coexistence of related species. Combined oxygen and carbon isotope data showed a consistent diet according to climate, probably due to the greater availability in glacial periods of cool-season grasses, which mainly use the C3 photosynthetic pathway. Given their adaptations to grazing, the climate amelioration, followed by the loss of grasslands, likely had a great impact on camelid populations, leading to their extinction in southern Brazil. These results, therefore, contribute to the understanding of the dynamics of paleocommunities in this region.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Acebes, P., Wheeler, J., Baldo, J., Tuppia, P., Lichtenstein, G., Hoces, D., and Franklin, W. L.. 2018. Vicugna vicugna (errata version published in 2019). IUCN Red List of Threatened Species 2018:e.T22956A145360542. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22956A145360542.en, accessed 22 January 2021.CrossRefGoogle Scholar
Asevedo, L., Ranzi, A., Kalliola, R., Pärssinen, M., Ruokolainen, K., Cozzuol, M. A., do Nascimento, E. R., Negri, F. R., Souza-Filho, J. P., Cherkinsky, A., and Dantas, M. A. T.. 2021. Isotopic paleoecology (δ13C, δ18O) of late Quaternary herbivorous mammal assemblages from southwestern Amazon. Quaternary Science Reviews 251:106700.CrossRefGoogle Scholar
Baldi, R. B., Acebes, P., Cuéllar, E., Funes, M., Hoces, D., Puig, S., and Franklin, W. L.. 2016. Lama guanicoe. IUCN Red List of Threatened Species 2016:e.T11186A18540211. https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T11186A18540211.enhttps://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T11186A18540211.en, accessed 22 January 2021.CrossRefGoogle Scholar
Barbour, M. M. 2007. Stable oxygen isotope composition of plant tissue: a review. Functional Plant Biology 34:8394.CrossRefGoogle ScholarPubMed
Bauermann, S. G., Behling, H., and Macedo, R. B.. 2009. Biomas regionais e evolução da paisagem no Rio Grande do Sul com base em paleopalinologia. Pp. 8194 in Ribeiro, A. M., Bauermann, S. G., and Scherer, C. S., eds. Quaternário do Rio Grande do Sul: integrando conhecimentos. Sociedade Brasileira de Paleontologia, Porto Alegre, Brazil.Google Scholar
Baxter, M. S., and Walton, A.. 1970. A theoretical approach to the Suess effect. Proceedings of the Royal Society of London 318:213230.Google Scholar
Behling, H. 2002. South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Paleogeography, Palaeoclimatology, Palaeoecology 177:1927.CrossRefGoogle Scholar
Behling, H., Pillar, V. D., Orlóci, L., and Bauermann, S. G.. 2004. Late Quaternary Araucaria forest, grassland (campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 203:277297.CrossRefGoogle Scholar
Behling, H., Pillar, V. D., and Bauermann, S. G.. 2005. Late Quaternary grassland (campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Review of Palaeobotany and Palynology 133:235248.CrossRefGoogle Scholar
Bocherens, H., and Drucker, D. G.. 2013. Terrestrial teeth and bones. Pp. 304314 in Elias, S. A. and Mock, C. J., eds. Encyclopedia of Quaternary science, 2nd ed. Elsevier, Amsterdam.CrossRefGoogle Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D., and Jaeger, J.. 1996. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11:306318.CrossRefGoogle Scholar
Boldrini, I. I., Overbeck, G. E., and Trevisan, R.. 2015. Biodiversidade de plantas. Pp. 5160 in Pillar, V. P. and Lange, O., eds. Os Campos do Sul. Rede Campos Sulinos–UFRGS, Porto Alegre, Brazil.Google Scholar
Bolnick, D. I., Svanbäck, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., and Forister, M. L.. 2003. The ecology of individuals: incidence and implications of individual specialization. American Naturalist 161:128.CrossRefGoogle ScholarPubMed
Buchmann, F. S. C. 2002. Bioclastos de organismos terrestres e marinhos na praia e plataforma interna do Rio Grande do Sul: natureza, distribuição, origem e significado geológico. PhD thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.Google Scholar
Buchmann, F. S. C., Caron, F., Lopes, R. P., Ugri, A., and de Lima, L. G.. 2009. Panorama geológico da planície costeira do Rio Grande do Sul Pp. 3456 in Ribeiro, A. M., Bauermann, S. G., and Scherer, C. S., eds. Quaternário do Rio Grande do Sul: integrando conhecimentos. Sociedade Brasileira de Paleontologia, Porto Alegre, Brazil.Google Scholar
Buriol, G. A., Estefanel, V., de Chagas, A. C., and Eberhardt, D.. 2007. Clima e vegetação natural do estado do Rio Grande do Sul segundo o diagrama climático de Walter e Lieth. Ciência Florestal 17:91100.CrossRefGoogle Scholar
Cajal, J. L. 1989. Uso de hábitat por vicuñas y guanacos en la Reserva de Biosfera de San Guillermo. Vida Silvestre Neotropical 2:2131.Google Scholar
Cassini, M., Borgnia, M., Arzamendia, Y., Benítez, V., and Vilá, B.. 2009. Sociality, foraging and habitat use by vicuña. Pp. 3548 in Gordon, I. J., ed. The vicuña. Springer, Boston.CrossRefGoogle Scholar
Castellaro, G., Orellana, C., Escanilla, J., Bastías, C., Cerpa, P., and Raggi, L.. 2020. Botanical composition and diet quality of the vicuñas (Vicugna vicugna Mol.) in highland range of Parinacota, Chile. Animals 10:1205.CrossRefGoogle ScholarPubMed
Ccora, E., Condori, A., Contreras, J. L., Curasma, J., Cordero, A. G., Valencia, N., Mayhua, P. H., and McGregor, B. A.. 2019. Biometric characteristics in vicuñas (Vicugna Vicugna mensalis). Small Ruminant Research 175:5256.CrossRefGoogle Scholar
Cerling, T. E., and Harris, J. M.. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.CrossRefGoogle ScholarPubMed
Clementz, M. T. 2012. New insight from old bones: stable isotope analysis of fossil mammals. Journal of Mammalogy 93:368380.CrossRefGoogle Scholar
Cordeiro, S. H., and Lorscheitter, M. L.. 1994. Palynology of Lagoa dos Patos sediments, Rio Grande do Sul, Brazil. Journal of Paleolimnology 10:3542.CrossRefGoogle Scholar
Cruz, F. W. Jr., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., and Ferrari, J. A.. 2006. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quaternary Science Reviews 25:27492761.CrossRefGoogle Scholar
Da-Rosa, A. A. S. 2009. Geologia do Quaternário continental do RS: estado da arte e perspectivas de trabalho. Pp. 1734 in Ribeiro, A. M., Bauermann, S. G., and Scherer, C. S., eds. Quaternário do Rio Grande do Sul: integrando conhecimentos. Sociedade Brasileira de Paleontologia, Porto Alegre, Brazil.Google Scholar
Dawson, T. E., Mandelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P.. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33:507559.CrossRefGoogle Scholar
Demény, A., Gugora, A. D., Kesjár, D., Lécuyer, C., and Fourel, F.. 2019. Stable isotope analyses of the carbonate component of bones and teeth: the need for method standardization. Journal of Archaeological Science 109:104979.CrossRefGoogle Scholar
Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M., and Putnam, A. E.. 2010. The last glacial termination. Science 328:16521656.CrossRefGoogle ScholarPubMed
DeSantis, L. R. G., Feranec, R. S., and MacFadden, B. J.. 2009. Effects of global warming on ancient mammalian communities and their environments. PLoS ONE 4: e5750.CrossRefGoogle ScholarPubMed
Dombrosky, J. 2020. A ~1000-year 13C Suess correction model for the study of past ecosystems. The Holocene 30:474478.CrossRefGoogle Scholar
Domingo, L., Tomassini, R. L., Montalvo, C. I., Sanz-Pérez, D., and Alberdi, M. T.. 2020. The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Scientific Reports 10:1608.CrossRefGoogle ScholarPubMed
Ehleringer, J. R., and Monson, R. K.. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24:411439.CrossRefGoogle Scholar
Ehleringer, J. R., and Rundel, P. W.. 1989. Stable isotopes: history, units, and instrumentation. Pp. 115 in Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., eds. Stable isotopes in ecological research. Springer, New York.Google Scholar
Feranec, R. S. 2003. Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology 29:230242.2.0.CO;2>CrossRefGoogle Scholar
Franklin, W. L. 1983. Contrasting socioecologies of South America's wild camelids: the vicuña and the guanaco. American Society of Mammalogists Special Publication 7:573629.Google Scholar
Friedman, I., and O'Neil, J. R.. 1977. Compilation of stable isotope fractionation factors of geochemical interest. Geological Survey Professional Paper 440–KK:KK1–KK12.CrossRefGoogle Scholar
Gannes, L. Z., de Rio, C. M., and Koch, P.. 1998. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comparative Biochemistry and Physiology 119A:725737.CrossRefGoogle Scholar
Gayo, E. M., Martens, T., Stuart-Williams, H., Fenner, J., Santoro, C. M., Carter, C., and Cameron, J.. 2020. Procurement of camelid fiber in the hyperarid Atacama Desert coast: insights from stable isotopes. Quaternary International 548:7183.CrossRefGoogle Scholar
Gervais, H., and Ameghino, F.. 1880. Les mammifères fossiles de l'Amérique du Sud. F. Savy, Paris, France.CrossRefGoogle Scholar
Gil, A. F., Ugan, A., Otaola, C., Neme, G., Giardina, M., and Menéndez, L.. 2016. Variation in camelid δ13C and δ15N values in relation to geography and climate: Holocene patterns and archaeological implications in central western Argentina. Journal of Archaeological Science 66:720.CrossRefGoogle Scholar
González, B. A., Palma, R. E., Zapata, B., and Marín, J. C.. 2006. Taxonomic and biogeographical status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mammal Review 36:157178.CrossRefGoogle Scholar
González-Guarda, E., Domingo, L., Tornero, C., Pino, M., Fernández, M. H., Sevilla, P., Villavicencio, N., and Agustí, J.. 2017. Late Pleistocene ecological, environmental and climatic reconstruction based on megafauna stable isotopes from northwestern Chilean Patagonia. Quaternary Science Reviews 170:188202.CrossRefGoogle Scholar
Hayek, L. C., Bernor, R. L., Solounias, N., and Steigerwald, P.. 1992. Preliminary studies of hipparionine horse diet as measured by tooth microwear. Annales Zoologici Fennici 28:187200.Google Scholar
Hedges, R. E. M., Stevens, R. E., and Richards, M. P.. 2004. Bone as a stable isotope archive for local climatic information. Quaternary Science Reviews 23:959965.CrossRefGoogle Scholar
Kaiser, T. M., Solounias, N., Fortelius, M., Bernor, R. L., and Schrenk, F.. 2000. Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany)—a blind test study. Carolinea 58:103114.Google Scholar
Kelly, J. F. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78:127.CrossRefGoogle Scholar
Kerber, L., Kinoshita, A., José, F. A., Figueiredo, A. M. G., Oliveira, É. V., and Baffa, O.. 2011. Electron spin resonance dating of the southern Brazilian Pleistocene mammals from Touro Passo Formation, and remarks on the geochronology, fauna and palaeoenvironments. Quaternary International 245:201208.CrossRefGoogle Scholar
Kerber, L., Pitana, V. G., Ribeiro, A. M., Hsiou, A. S., and Oliveira, E. V.. 2014. Late Pleistocene vertebrates from Touro Passo Creek (Touro Passo Formation), southern Brazil: a review. Revista Mexicana de Ciencias Geológicas 31:248259.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.CrossRefGoogle Scholar
Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., and Ehleringer, J. R.. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences USA 103:1120111205.CrossRefGoogle ScholarPubMed
Longhi-Wagner, H. M. 2012. Poaceae: an overview with reference to Brazil. Rodriguésia 63:89100.CrossRefGoogle Scholar
Lopes, R. P., Oliveira, L. C., Figueiredo, A. M. G., Kinoshita, A., Baffa, O., O., and Buchmann, F. S.. 2010. ESR dating of Pleistocene mammal teeth and its implications for the biostratigraphy and geological evolution of the coastal plain, Rio Grande do Sul, southern Brazil. Quaternary International 212:213222.CrossRefGoogle Scholar
Lopes, R. P., Pereira, J. C., Kerber, L., and Dillenburg, S. R.. 2020. The extinction of the Pleistocene megafauna in the Pampa of southern Brazil. Quaternary Science Reviews 242:106428.CrossRefGoogle Scholar
Lopes, R. P., Dillenburg, S. R., Savian, J. F., and Pereira, J. C.. 2021. The Santa Vitória Alloformation: an update on a Pleistocene fossil-rich unit in Southern Brazil. Brazilian Journal of Geology 51:e2020065.CrossRefGoogle Scholar
López, A., Maiztegui, J., and Cabrera, R.. 1998. Voluntary intake and digestibility of forages with different nutritional quality in alpacas (Lama pacos). Small Ruminant Research 29:295301.CrossRefGoogle Scholar
Lorscheitter, M. L., and Dillenburg, S. R.. 1998. Holocene palaeoenvironments of the northern coastal plain of Rio Grande do Sul, Brazil, reconstructed from palynology of Tramandaí lagoon sediments. Quaternary of South America and Antarctic Peninsula 11:7397.Google Scholar
Lüttge, U. 2004. Ecophysiology of crassulacean acid metabolism (CAM). Annals of Botany 93:629652.CrossRefGoogle ScholarPubMed
Luz, B., Kolodny, Y., and Horowitz, M.. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental water. Geochimica et Cosmochimica Acta 48:16891693.CrossRefGoogle Scholar
Lynch, S., Sánchez-Villagra, R., and Balcarcel, A.. 2020. Description of a fossil camelid from the Pleistocene of Argentina, and a cladistic analysis of the Camelinae. Swiss Journal of Paleontology 139:8.CrossRefGoogle Scholar
Ma, J., Wang, Y., Jin, C., Hu, Y., and Bocherens, H.. 2019. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotopes (C, O) analysis. Quaternary Science Reviews 212:3344.CrossRefGoogle Scholar
Macedo, R. B., Cancelli, R. R., Bauermann, S. G., Bordignon, S. A. L., and das Neves, P. C. P.. 2007. Palinologia de níveis do Holoceno da planície costeira do Rio grande do Sul (localidade de Passinhos), Brasil. Gaea 3:6874.Google Scholar
MacFadden, B. J., and Shockey, B. J.. 1997. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23:77100.CrossRefGoogle Scholar
Masetto, E., and Lorscheitter, M. L.. 2019. Vegetation dynamics during the last 7500 years on the extreme southern Brazilian coastal plain. Quaternary International 524:4856.CrossRefGoogle Scholar
Medeanic, S., and Corrêa, I. C. S.. 2010. Climatic changes in the coastal plain of Rio Grande do Sul state in the Holocene: palynomorph evidences. Pan-American Journal of Aquatic Sciences 5:287297.Google Scholar
Menegaz, A. N., Goin, F. J., and Jaureguizar, E. O.. 1989. Analisis morfologico y morfométrico multivariado de los representantes fosiles y vivientes del genero Lama (Artiodactyla, Camelidae). Sus implicancias sistematicas, biogeográficas, ecologicas y biocronologicas. Ameghiniana 26:153172.Google Scholar
Molina, G. I. 1782. Sagio sulla Storia Naturale del Chili. Stamperia di S. Tommaso d'Aquino, Bologna, Italy.CrossRefGoogle Scholar
Moreira, A., Fontana, D. C., Kuplich, T. M., and Guasselli, L. A.. 2019. Phenological metrics of the grassland vegetation of Rio Grande do Sul, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 12:899906.CrossRefGoogle Scholar
Müller, P. L. S. 1776. Des Ritters C. von Linné vollständiges Natursystem nach der zwölften Lateinischen Ausgabe und nach Anleitung des holländischen houttuynischen Werks, mit einer ausfuhrlichen Erklarung ausgefertiget von P.L.S. Müller. G.N. Raspe, Nuremberg, Germany.Google Scholar
O'Leary, M. H. 1988. Carbon isotopes in photosynthesis. BioScience 38:328336.CrossRefGoogle Scholar
Overbeck, G. E., Boldrini, I. I., do Carmo, M. R. B., Garcia, E. N., Moro, R. S., Pinto, C. E., Trevisan, R., A. and Zannin, . 2015. Fisionomia dos campos. Pp. 3142 in Pillar, V. P. and Lange, O., eds. Os Campos do Sul. Rede Campos Sulinos–UFRGS, Porto Alegre, Brazil.Google Scholar
Parnell, A., and Inger, R.. 2016. Stable isotope mixing models in R with simmr. https://cran.r-project.org/web/packages/simmr/vignettes/simmr.htmlhttps://cran.r-project.org/web/packages/simmr/vignettes/simmr.html, accessed 2 February 2021.Google Scholar
Peterson, B. J., and Fry, B.. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293320.CrossRefGoogle Scholar
Prado, J. L., Sánchez, B., and Alberdi, M. T.. 2011. Ancient feeding ecology inferred from stable isotopic evidence from fossil horses in South America over the past 3 Ma. BMC Ecology 11:15.CrossRefGoogle ScholarPubMed
Preston, J. C., and Fjellheim, S.. 2020. Understanding past, and predicting future, niche transitions based on grass flowering time variation. Plant Physiology 183:822839.CrossRefGoogle ScholarPubMed
Prevosti, F. J., and Vizcaíno, S. F.. 2006. Paleoecology of the large carnivore guild from the late Pleistocene of Argentina. Acta Paleontologica Polonica 51:407422.Google Scholar
Puig, S., Videla, F., Monge, S., and Roig, V.. 1996. Seasonal variations in guanaco diet (Lama guanicoe Müller 1776) and food availability in northern Patagonia, Argentina. Journal of Arid Environments 34:215224.CrossRefGoogle Scholar
Puig, S., Videla, F., and Cona, M. I.. 1997. Diet and abundance of the guanaco (Lama guanicoe Müller 1776) in four habitats of northern Patagonia, Argentina. Journal of Arid Environments 36:343357.CrossRefGoogle Scholar
Puig, S., Rosi, M. I., Videla, F., and Mendez, R.. 2011. Summer and winter diet of the guanaco and food availability for a High Andean migratory population (Mendoza, Argentina). Mammalian Biology 76:727734.CrossRefGoogle Scholar
R Core Team 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rivals, F., and Semprebon, G. M.. 2011. Dietary plasticity in ungulates: insight from tooth microwear analysis. Quaternary International 245:279284.CrossRefGoogle Scholar
Rivals, F., Rindel, D., and Belardi, J. B.. 2013. Dietary ecology of extant guanaco (Lama guanicoe) from southern Patagonia: seasonal leaf browsing and its archaeological implications. Journal of Archaeological Science 40:29712980.CrossRefGoogle Scholar
Rocha-dos-Santos, B. C. A., Avilla, L. S., and Scherer, C. S.. 2017. The fossil Camelidae (Mammalia: Cetartiodactyla) from the Gruta do Urso cave, northern Brazil. Quaternary International 436:181191.CrossRefGoogle Scholar
Roth, L., Lorscheitter, M. L., and Masetto, E.. 2021. Paleoenvironments of the last 24,000 years on the extreme northern Rio Grande do Sul coastal plain, southern Brazil. Quaternary International 571:117126.CrossRefGoogle Scholar
Saarinen, J., and Lister, A. M.. 2016. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. Journal of Quaternary Science 31:799808.CrossRefGoogle Scholar
Scherer, C. S. 2009. Os Camelidae Lamini (Mammalia, Artiodactyla) do Pleistoceno da América do sul: aspectos taxonômicos e filogenéticos. PhD thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.Google Scholar
Scherer, C. S. 2013. The Camelidae (Mammalia, Artiodactyla) from the Quaternary of South America: cladistic and biogeographic hypotheses. Journal of Mammalian Evolution 20: 4556.CrossRefGoogle Scholar
Shaw, A. K., Galaz, J. L., and Marquet, P. A.. 2012. Population dynamics of the vicuña (Vicugna vicugna): density-dependence, rainfall, and spatial distribution. Journal of Mammalogy 93:658666.CrossRefGoogle Scholar
Simonin, K. A., Roddy, A. B., Link, P., Apodaca, R., Tu, K. P., Hu, J., Dawson, T. E., and Barbour, M. M.. 2013. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables. Plant, Cell and Environment 36:21902206.CrossRefGoogle ScholarPubMed
Soliani, E. Jr. 1973. Geologia da região de Santa Vitória do Palmar, RS, e a posição estratigráfica dos fósseis de mamíferos pleistocênicos. Dissertation. Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.Google Scholar
Sponheimer, M., Robinson, T., Roeder, B., Hammer, J., Ayliffer, L., Passey, B., Cerling, T., Dearing, D., and Ehleringer, J.. 2003. Digestion and passage rates of grass hays by llamas, alpacas, goats, rabbits, and horses. Small Ruminant Research 48:149154.CrossRefGoogle Scholar
Sullivan, C. H., and Krueger, H. W.. 1981. Carbon isotope analysis of separate chemical phases in moderns and fossil bone. Nature 292:333335.CrossRefGoogle ScholarPubMed
Szpak, P., and Valenzuela, D.. 2020. Camelid husbandry in the Atacama Desert? A stable isotope study of camelid bone collagen and textiles from the Lluta and Camarones Valleys, northern Chile. PLoS ONE 15:e0228332.CrossRefGoogle Scholar
Tejada-Lara, J. V., MacFadden, B. J., Bermudez, L., Rojas, G., Salas-Gismondi, R., and Flynn, J. J.. 2018. Body mass predicts isotope enrichment in herbivorous mammals. Proceedings of the Royal Society of London B 285:20181020.Google ScholarPubMed
Torres, M. E. M., and Puig, S.. 2010. Seasonal diet of vicuñas in the Los Andes protected area (Salta, Argentina): are they optimal foragers? Journal of Arid Environments 74:450457.CrossRefGoogle Scholar
Webb, S. D. 2006. The Great American Biotic Interchange: patterns and processes. Annals of the Missouri Botanical Garden 93:245257.CrossRefGoogle Scholar
Woodburne, M. O. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17:245264.CrossRefGoogle ScholarPubMed
Wrege, M. S., Steinmetz, S., Júnior, C. R., and Almeida, I. R.. 2012. Atlas Climático da Região Sul do Brasil: Estados do Paraná, Santa Catarina e Rio Grande do Sul (Segunda Edição). Embrapa, Brasília, Brazil.Google Scholar
Yann, L. T. 2014. Diet and water source of Pleistocene Lamini camelids based on stable isotopes of tooth enamel: implications for North American vegetation and paleoclimate. PhD thesis. Vanderbilt University, Nashville, Tenn.Google Scholar
Yann, L. T., DeSantis, L. R. G., Haupt, R. J., Romer, J. L., Corapi, S. E., and Ettenson, D. J.. 2013. The application of an oxygen isotope aridity index to terrestrial paleoenvironmental reconstructions in Pleistocene North America. Paleobiology 39:576590.CrossRefGoogle Scholar
Yann, L. T., DeSantis, L. R. G., Koch, P. L., and Lundelius, E. L.. 2016. Dietary ecology of Pleistocene camelids: influences of climate, environment, and sympatric taxa. Palaeogeography, Palaeoclimatology, Palaeoecology 461:389400.CrossRefGoogle Scholar