Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:08:37.622Z Has data issue: false hasContentIssue false

Paedomorphosis and the evolution of the Dipnoi

Published online by Cambridge University Press:  08 February 2016

William E. Bemis*
Affiliation:
Department of Zoology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720

Abstract

Paedomorphosis has played an important evolutionary role in several vertebrate lineages, yet there are few studies in which fossils have been used to document this evolutionary pattern directly. The unusually good fossil record of lungfishes offers an excellent opportunity to do this. An approach to recognizing paedomorphic character complexes in fossil lineages is formalized, and the interdependence of ontogenetic and phylogenetic studies is reemphasized. Concordant evolutionary changes in seven characters representing a variety of organ systems are discussed. For example, in Devonian lungfishes, the tail is heterocercal, endochondrally ossified bones are present, and the fin rays are similar to those of other Osteichthyes. Recent lungfishes have protocercal tails, suppression of endochondral ossification, and greatly reduced fin rays. The data suggest that paedomorphosis played a pervasive role in the evolution of lungfishes and give further evidence for the evolutionary importance of heterochrony.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. and Alberch, J. 1981. Heterochronic mechanisms of morphological diversification and evolutionary change in the neotropical salamander, Bolitoglossa occidentalis (Amphibia: Plethodontidae). J. Morphol. 167:249264.CrossRefGoogle ScholarPubMed
Alberch, P., Gould, S., Oster, G., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology. 5:296317.CrossRefGoogle Scholar
Andrews, S. M. 1973. Interrelationships of crossopterygians. Pp. 137177. In: Greenwood, P. H., Miles, R. S., and Patterson, C., eds. Interrelationships of Fishes. Academic Press; London.Google Scholar
Balfour, F. M. and Parker, W. K. 1881. On the structure and development of Lepidosteus. Proc. Roy. Soc. Lond. 33:112119.Google Scholar
Bemis, W. E. 1980. Paedomorphosis and the evolution of lungfishes (Dipnoi). Am. Zool. 20:757.Google Scholar
Bemis, W. E. 1982, Studies on the Functional and Evolutionary Morphology of Lepidosirenid Lungfish. Unpublished Ph.D. dissertation, Univ. Calif., Berkeley.Google Scholar
Berman, D. S. 1968. Lungfish from the Lueders formation (Lower Permian, Texas) and the Gnathorhiza-lepidosirenid ancestry questioned. J. Paleontol. 42:827835.Google Scholar
Bernacsek, G. M. 1977. A lungfish cranium from the middle Devonian of the Yukon Territory, Canada. Paleontographica Abt. A, 157:175200.Google Scholar
Bertmar, G. 1968. Phylogeny and evolution in lungfishes. Acta Zool. 47:82150.Google Scholar
Bolt, J. 1977. Dissorophoid relationships and ontogeny, and the origin of the Lissamphibia. J. Paleontol. 51:235249.Google Scholar
Bolt, J. 1979. Amphibamus grandiceps as a juvenile dissorophid: evidence and implications. Pp. 529563. In: Nitecki, M., ed. Mazon Creek Fossils. Academic Press; New York.CrossRefGoogle Scholar
Bouvet, J. 1974a. Differenciation et ultrastructure du squelette distal de la nageoire pectoral chez la truite idigne (Salmo trutta fario L.). I. Differenciation et ultrastructure des actinotriches. Arch. Anat. Microsc. Morphol. Exp. 63:7996.Google Scholar
Bouvet, J. 1974b. Differenciation et ultrastructure du squelette distal de la nageoire pectoral chez la truite idigne (Salmo trutta fario L.). II. Differenciation et ultrastructure des lepidotriches. Arch. Anat. Microsc. Morphol. Exp. 63:323335.Google Scholar
Campbell, K. S. W. and Barwick, R. E. 1982. The neurocranium of the primitive dipnoan Dipnorhynchus sussmilchi (Etheridge). J. Vert. Paleontol. 2:286327.CrossRefGoogle Scholar
Campbell, K. S. W. and Bell, M. W. 1982. Soederberghia (Dipnoi) from the late Devonian of New South Wales. Alcheringa. 6:143149.CrossRefGoogle Scholar
Carlson, K. J. 1968. The skull morphology and estivation burrows of the Permian lungfish, Gnathorhiza serrata. J. Geol. 76:641663.CrossRefGoogle Scholar
Cavalier-Smith, T. 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34:247278.CrossRefGoogle ScholarPubMed
Compagno, L. J. V. 1979. Coelacanths: shark relatives or bony fishes? Occ. Pap. Calif. Acad. Sci. No. 134:4552.Google Scholar
Dean, B. 1896. On the larval development of Amia calva. Zool. Jahrb., Abt. Syst. 9:639672.Google Scholar
de Beer, G. R. 1937. The Development of the Vertebrate Skull. Oxford Univ. Press; London.Google Scholar
de Broin, F., Buffetaut, E., Koeniguer, J. C., Rage, J. C., Russell, D., Taquet, P., Vernaud-Grazzini, C., and Wenz, S. 1974. La faune de vertébrés continentaux du gisement d'in Beceten (Senonien du Niger). Comptes Rend. Acad. Sci. Paris. 279D:469472.Google Scholar
Denison, R. H. 1968a. Early Devonian lungfishes from Wyoming, Utah and Idaho. Fieldiana (Geol.) 17:353413.Google Scholar
Denison, R. H. 1968b. The evolutionary significance of the earliest known lungfish, Uranolophus. Nobel Symp. 4:247257.Google Scholar
Denison, R. H. 1969. New Pennsylvanian fishes from Illinois. Fieldiana (Geol.) 12:193211.Google Scholar
Dollo, L. 1895. Sur la phylogenie des Dipneustes. Bull. Soc. Belge Geol., Paleontol., Hydrol. 9:79128.Google Scholar
Dziewa, T. J. 1980. Note on a new dipnoan fish from the Triassic of Antarctica. J. Paleontol. 54:488490.Google Scholar
Eldredge, N. 1979. Alternative approaches to evolutionary theory. Bull. Carnegie Mus. Nat. Hist. 13:719.Google Scholar
Fernandez, J., Bondesio, P., and Pascual, R. 1973. Restos de Lepidosiren paradoxa (Osteichthyes, Dipnoi) de la Formacion Lumbrera (Eogene, ¿Eoceno?) de Jujuy. Consideraciones estratigraficas, paleoecologicas y paleozoogeograficas. Ameghiniana 10:152172.Google Scholar
Fink, W. L. 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology. 8:254264.CrossRefGoogle Scholar
Forster-Cooper, C. 1937. The middle Devonian fish fauna of Achanarras. Trans. Roy. Soc. Edinb. 59:223239.CrossRefGoogle Scholar
Gardiner, B. G. 1973. Interrelationships of teleostomes. Pp. 105135. In: Greenwood, P. H., Miles, R. S., and Patterson, C., eds. Interrelationships of Fishes. Academic Press; London.Google Scholar
Geraudie, J. and Meunier, F. J. 1980. Elastoidin actinotrichia in coelacanth fins: a comparison with teleosts. Tiss. and Cell 12:637645.CrossRefGoogle Scholar
Geraudie, J. and Meunier, F. J. 1982. Comparative fine structure of osteichthyan dermotrichia. Anat. Rec. 202:325328.CrossRefGoogle ScholarPubMed
Goodrich, E. S. 1904. On the dermal fin rays of fish—living and extinct. Quart. Rev. Microsc. Sci. 47:465522.Google Scholar
Goodrich, E. S. 1907. On the scales of fish, living and extinct, and their importance in classification. Proc. Zool. Soc. Lond. 2:751774.CrossRefGoogle Scholar
Goodrich, E. S. 1930. Studies on the Structure and Development of Vertebrates, Vols. 1 and 2. (Reprint ed., 1958). Dover; New York.CrossRefGoogle Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard Univ. Press; Cambridge.Google Scholar
Graham-Smith, W. and Westoll, T. S. 1937. On a new long headed dipnoan fish from the Upper Devonian of Scaumenac Bay, P.Q., Canada. Trans. Roy. Soc. Edin. 59:241266.CrossRefGoogle Scholar
Haas, H. J. 1962. Studies on the mechanism of bone and joint formation in the skeleton rays of fish fins. Dev. Biol. 5:134.CrossRefGoogle ScholarPubMed
Halstead, L. B. 1974. Vertebrate Hard Tissues. Wykeham; London.Google Scholar
Hanken, J. 1982. Appendicular skeletal morphology in minute salamanders, genus Thorius (Amphibia: Plethodontidae): growth regulation, adult size determination, and natural variation. J. Morphol. 174:5777.CrossRefGoogle ScholarPubMed
Hecht, M. K. and Edwards, J. L. 1976. The determination of parallel or monophyletic relationships: the proteid salamanders—a test case. Am. Nat. 110:653677.CrossRefGoogle Scholar
Hinchliffe, J. R. and Ede, D. A. 1968. Abnormalities in bone and cartilage development in the talpid3 mutant in the fowl. J. Embryol. Exp. Morphol. 19:327339.Google Scholar
Jarvik, E. 1959. Dermal fin rays and Holmgren's principle of delamination. Kung. Svenska Vetensk. Akad. Handl. 4(6):151.Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of Vertebrates. Academic Press; London.Google Scholar
Kemp, A. and Molnar, R. E. 1981. Neoceratodus forsteri from the lower Cretaceous of New South Wales, Australia. J. Paleontol. 55:211217.Google Scholar
Kemp, N. E. and Park, J. H. 1970. Regeneration of lepidotrichia and actinotrichia in the tailfin of the teleost Tilapia mossambica. Dev. Biol. 22:321342.CrossRefGoogle ScholarPubMed
Kerr, J. G. 1909. Normal plates of the development of Lepidosiren paradoxa and Protopterus annectens. Pp. 131. In: Keibel, F., ed. Normentafeln sur Entwicklungsgeschichte der Wirbelthiere. 10. Gustav Fischer; Jena.Google Scholar
Kerr, J. G. 1919. Text-Book of Embryology. Vol. 2. Vertebrata. MacMillan & Co.; London.CrossRefGoogle Scholar
Kerr, T. 1955. The scales of modern lungfish. Proc. Zool. Soc. Lond. 125:335345.CrossRefGoogle Scholar
Laerm, J. 1979a. On the origin of rhipidistian vertebrae. J. Paleontol. 53:175186.Google Scholar
Laerm, J. 1979b. The origin and homology of the chondrostean vertebral centrum. Can. J. Zool. 57:475485.CrossRefGoogle Scholar
Larson, A. 1980. Paedomorphosis in relation to rates of morphological and molecular evolution in the salamander Aneides flavipunctatus (Amphibia: Plethodontidae). Evolution. 34:117.CrossRefGoogle ScholarPubMed
Lauder, G. V. 1981. Form and function: structural analysis in evolutionary morphology. Paleobiology. 7:430442.CrossRefGoogle Scholar
Lauder, G. V. and Liem, K. 1983. The evolution and interrelationships of the actinopterygian fishes. Bull. Mus. Comp. Zool. 150:95197.Google Scholar
Lavocat, R. 1955. Découverte de Dipneustes du genre Protopterus dans le Tertiare ancien de Tamaguiler (Soudan Francais). Comptes Rend. Hebd. Séanc. Acad. Sci. Paris. 240:19151917.Google Scholar
Lehman, J. P. 1966. Dipnoi et Crossopterygii. Pp. 243412. In: Lehman, J. P., ed. Traité de Paléontologie, 4.3. Masson; Paris.Google Scholar
Lund, R. 1970. Fossil fishes from southwestern Pennsylvania. I. Fishes from the Duquesne limestone. Ann. Carnegie Mus. 41:231261.CrossRefGoogle Scholar
Macgregor, H. C. 1982. Big chromosomes and speciation amongst Amphibia. Pp. 325341. In: Dover, G. A., and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Martin, M. 1979. Arganodus atlantis et Ceratodus arganensis, deux nouveaux Dipneustes du Trias supérior continental marocain. Comptes Rend. Acad. Sci. Paris. 289D:8992.Google Scholar
Martin, M. 1980. Revision of Ceratodus concinnus Plieninger. Stuttgart Beit. Nat. ser. B. No. 56:115.Google Scholar
Martin, M. 1982. Nouvelles données sur la phylogenie et la systématique des Dipneustes postpaléozoiques. Comptes Rend. Acad. Sci. Paris 294, iii:413416.Google Scholar
Miles, R. S. 1977. Dipnoan (lungfish) skulls and the relationships of the group: a study based on new species from the Devonian of Australia. Zool. J. Linn. Soc. 61:1328.CrossRefGoogle Scholar
Mookerjee, H. K., Ganguly, D. N., and Brahma, S. K. 1954. On the development of the centrum and arches in the Dipnoi, Protopterus annectens. Anat. Anz. 100:217230.Google ScholarPubMed
Morescalchi, A. 1975. Chromosome evolution in the caudate amphibia. Evol. Biol. 8:330387.Google Scholar
Morescalchi, A. 1977. Phylogenetic aspects of karyological evidence. Pp. 149167. In: Hecht, M. K., Goody, P. C., and Hecht, B. M., eds. Major Patterns in Vertebrate Evolution. Plenum Press; New York.CrossRefGoogle Scholar
Morescalchi, A. 1979. New developments in vertebrate cytotaxonomy. I. Cytotaxonomy of the amphibians. Genetica. 50:179193.CrossRefGoogle Scholar
Morescalchi, A. and Serra, V. 1974. DNA renaturation kinetics in some paedogenetic urodeles. Experientia. 30:487489.CrossRefGoogle ScholarPubMed
Moss, M. L. 1977. Skeletal tissues in sharks. Am. Zool. 17:335342.CrossRefGoogle Scholar
Moy-Thomas, J. A. and Miles, R. S. 1971. Palaeozoic Fishes. Saunders; Philadelphia.CrossRefGoogle Scholar
Nelson, G. 1978. Ontogeny, phylogeny, paleontology and the biogenetic law. Syst. Zool. 27:324345.CrossRefGoogle Scholar
Ørvig, T. 1957. Remarks on the vertebrate fauna of the lower Devonian of Escuminac Bay, P.Q. Canada, with special reference to the porolepiform crossopterygians. Ark. Zool. 10:367426.Google Scholar
Ørvig, T. 1969. Cosmine and cosmine growth. Lethaia. 2:241260.CrossRefGoogle Scholar
Patterson, C. 1977. Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus the endoskeleton. Pp. 77121. In: Andrews, S. M., Miles, R. S., and Walker, A. D., eds. Problems in Vertebrate Evolution. Academic Press; London.Google Scholar
Patterson, C. 1982. Morphology and interrelationships of primitive actinopterygian fishes. Am. Zool. 22:241259.CrossRefGoogle Scholar
Rensch, B. 1959. Evolution above the Species Level. Columbia Univ. Press; N.Y.CrossRefGoogle Scholar
Romer, A. S. 1966. Vertebrate Paleontology. Univ. Chicago Press; Chicago.Google Scholar
Rosen, D. E., Forey, P. L., Gardiner, B. G., and Patterson, C. 1981. Lungfishes, tetrapods, paleontology and plesiomorphy. Bull. Am. Mus. Nat. Hist. 167:159275.Google Scholar
Säve-Söderbergh, G. 1952. On the skull of Chirodipterus wildungensis Gross, an upper Devonian dipnoan from Wildungen. K. Svenska Vetensk. Akad. Handl. 3:129.Google Scholar
Schaeffer, B. 1952. Rates of evolution in the coelacanth and dipnoan fishes. Evolution 6:101111.CrossRefGoogle Scholar
Schaeffer, B. 1967. Osteichthyan vertebrae. J. Linn. Soc. Lond. 47:185195.CrossRefGoogle Scholar
Schultze, H. P. 1970. Die Histologie der Wirbelkörper der Dipnoer. Neues Jahrb. Geol. Paleontol. Abh. 135:311336.Google Scholar
Schultze, H. P. 1975. Die Lungenfisch-gatung Conchopoma (Pisces: Dipnoi). Senckenberg. Leth. 56:191231.Google Scholar
Schultze, H. P. 1977a. Megapleuron zangerli. A new dipnoan from the Pennsylvanian of Illinois. Fieldiana (Geol.) 33:375396.Google Scholar
Schultze, H. P. 1977b. Ausgangsform und Entwicklung der rhombischen Schuppen der Osteichthyes (Pisces). Paleontol. Z. 51:152168.Google Scholar
Schultze, H. P. 1981. Das Schadeldach eines ceratodontiden Lungenfisches aus der Trias Suddeutschlands (Dipnoi: Pisces). Stuttgart Beit. Naturkunde B, 70:131.Google Scholar
Sigé, B. 1968. Dents de micromammiferes et fragments de coquilles d'oefs de Dinosauriens dans le faune de Vertebres du Crétacé superior de Laguna Umayo (Andes: Peruviennes). Comptes Rend. Acad. Sci. Paris 267D:14951498.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Smith, M. M. 1977. The microstructure of the dentition and dermal ornament of three dipnoans from the Devonian of Western Australia: a contribution towards dipnoan inter-relations and morphogenesis, growth and adaptation of the skeletal tissues. Phil. Trans. Roy. Soc. Lond. B281:2972.Google Scholar
Smith, M. M. 1979. Structure and histogenesis of tooth plates in Sagenodus inaequalis Owen considered in relation to the phylogeny of post-Devonian dipnoans. Proc. Roy. Soc. B204:1539.Google Scholar
Stanley, S. M. 1980. Macroevolution: Pattern and Process. W. H. Freeman; San Francisco.Google Scholar
Thomson, K. S. 1965. On the relationships of certain Carboniferous Dipnoi, with descriptions of four new forms. Proc. Roy. Soc. Edinb. 69B:221245.Google Scholar
Thomson, K. S. 1969. The biology of the lobe-finned fishes. Biol. Rev. 44:91154.CrossRefGoogle ScholarPubMed
Thomson, K. S. 1972. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J. Exp. Zool. 180:363372; 181:287.CrossRefGoogle Scholar
Thomson, K. S. 1975. On the biology of cosmine. Bull. Peabody Mus. Nat. Hist. 40:159.Google Scholar
Thomson, K. S. 1977. On the individual history of cosmine and a possible electroreceptive function of the pore-canal system in fossil fishes. Pp. 247270. In: Andrews, S. M., Miles, R. S., and Walker, A. D., eds. Problems in Vertebrate Evolution. Academic Press; London.Google Scholar
Thomson, K. S. and Campbell, K. S. W. 1971. The structure and relationships of the primitive Devonian lungfish—Dipnorhynchus sussmilchi (Etheridge). Bull. Peabody Mus. Nat. Hist. 38:1109.Google Scholar
Thomson, K. S. and Muraszko, K. 1978. Estimation of cell size and DNA content in fossil fishes and amphibians. J. Exp. Zool. 205:315320.CrossRefGoogle Scholar
Vorobyeva, E. I. 1967. Triassic ceratod from South Fergana and remarks on the systematics and phylogeny of ceratodontids. Paleontol. J. 1967:8087.Google Scholar
Wake, D. B. 1966. Comparative osteology and evolution of the lungless salamanders; family Plethodontidae. Mem. S. Calif. Acad. Sci. 4:1111.Google Scholar
Wake, D. B. 1980. Evidence of heterochronic evolution: a nasal bone in the Olympic salamander, Rhyacotriton olympicus. J. Herpetol. 14:292295.CrossRefGoogle Scholar
Watson, D. M. S. and Day, H. 1916. Notes on some Paleozoic fishes. Manchester Mem. 60:148.Google Scholar
Watson, D. M. S. and Gill, E. L. 1923. The structure of certain Paleozoic Dipnoi. J. Linn. Soc. Zool. 35:163216.CrossRefGoogle Scholar
Westoll, T. S. 1936. On the structure of the dermal ethmoid shield of Osteolepis. Geol. Mag. 73:157171.CrossRefGoogle Scholar
Westoll, T. S. 1949. On the evolution of the Dipnoi. Pp. 21184. In: Simpson, G. G., and Mayr, E., eds. Genetics, Paleontology and Evolution. Princeton Univ. Press; Princeton.Google Scholar
White, E. I. 1965. The head of Dipterus valenciennesi Sedgwick and Murchison. Bull. Brit. Mus. Nat. Hist. (Geol.) 11:145.Google Scholar
Wiley, E. O. 1976. The phylogeny and biogeography of fossil and Recent gars (Actinopterygii: Lepisosteidae). Univ. Kans. Mus. Nat. Hist. Misc. Pub. 64:1111.Google Scholar
Wiley, E. O. 1979. Ventral gill arch muscles and the interrelationships of gnathostomes, with a new classification of the Vertebrata. Zool. J. Linn. Soc. 67:149179.CrossRefGoogle Scholar
Worthington, R. D. and Wake, D. B. 1971. Larval morphology and ontogeny of the ambystomatid salamander, Rhyacotriton olympicus. Am. Midl. Nat. 85:349365.CrossRefGoogle Scholar