Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T20:30:49.291Z Has data issue: false hasContentIssue false

Morphometrics of the Paleocene coccolith genera Cruciplacolithus, Chiasmolithus, and Sullivania: a complex evolutionary history

Published online by Cambridge University Press:  08 April 2016

Timothy J. Bralower
Affiliation:
Department of Geology, University of North Carolina, Chapel Hill, North Carolina 27599-3315
Matthew Parrow
Affiliation:
Department of Geology, University of North Carolina, Chapel Hill, North Carolina 27599-3315

Abstract

Investigation of the evolution of calcareous nannoplankton is hindered by the extremely small size (5-10 μm) of their fossils. We introduce new technology, a scanning electron microscope connected to an image analysis system (SEM-IAS), which allows this field to be explored as never before. This system enables a host of morphocharacters to be measured and included in studies of phylogeny and evolutionary dynamics. We have applied the SEM-IAS to study the evolution of Paleocene coccolith genera Cruciplacolithus, Chiasmolithus, and Sullivania. A variety of detailed measurements have been made on over 4000 coccoliths from Deep Sea Drilling Project Site 384 in the temperate North Atlantic and Ocean Drilling Program Site 690 in the Weddell Sea off Antarctica. Our results indicate no simple relationships between morphocharacters, the shapes of all three genera are both complex and highly variable. Although most morphocharacters possess little phylogenetic significance, the areas of different shield cycles show gradual divergence between Chiasmolithus and Sullivania through the Paleocene. Change of most other morphocharacters occurs at variable rates and reversals in trends are common. Minimal correlation exists between the trends and oscillatory shape changes observed at the two sites. We conclude that these trends and oscillations represent local, transitory ecophenotypic variation of the complex form. There is little stasis in the ten-million-year record studied.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassiformis lineage: a preliminary report. Paleobiology 9:390397.Google Scholar
Aubry, M.-P. 1988. Phylogeny of the Cenozoic calcareous nannoplankton genus Helicosphaera. Paleobiology 14:6480.Google Scholar
Aubry, M.-P. 1989. Phylogenetically based calcareous nannofossil taxonomy: implications for the interpretation of geological events. pp. 2140in Crux and van Heck 1989.Google Scholar
Backman, J., and Hermelin, J. O. R. 1986. Morphometry of the Eocene nannofossil Reticulofenestra umbilicus lineage and its biochronological consequences. Palaeogeography, Palaeoclimatology, Palaeoecology 57:103116.Google Scholar
Baker, C. 1983. Evolution and hybridization in the radiolarian genera Theocorythium and Lamprocyclas. Paleobiology 9:341354.Google Scholar
Barker, P., Kennett, J. P., O'Connell, S., et al. 1990. Scientific results of the Ocean Drilling Program, Vol. 113. Ocean Drilling Program, College Station, Tex.Google Scholar
Bookstein, F. L. 1987. Random walk and the existence of evolutionary rates. Paleobiology 13:446464.Google Scholar
Bramlette, M. N., and Martini, E. 1964. The great change in calcareous nannoplankton fossils between the Maestrichtian and Danian. Micropaleontology 10:291322.Google Scholar
Bukry, D. 1973. Low-latitude coccolith biostratigraphic zonation. In Edgar, N. T. and Saunders, J. B., eds. Initial Reports of the Deep Sea Drilling Project 15:685703. U.S. Government Printing Office, Washington, D.C.Google Scholar
Crux, J. A., and van Heck, S. 1989. Nannofossils and their applications. Ellis Horwood, Chichester, England.Google Scholar
Douglas, R. G., and Savin, S. M. 1975. Oxygen and carbon isotopic analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean. In Larson, R. L. and Moberly, R., eds. Initial Reports of the Deep Sea Drilling Project 32:509520. U.S. Government Printing Office, Washington, D.C.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. W. H. Freeman, San Francisco.Google Scholar
Firth, J. V., and Wise, S. W. Jr. 1992. A preliminary study of the evolution of Chiasmolithus in the middle Eocene to Oligocene of Sites 647 and 748, ODP Leg 120. In Wise, S. W. Jr. and Schlich, R., eds. Scientific results of the Ocean Drilling Program 120:493508. Ocean Drilling Program, College Station, Tex.Google Scholar
Fischer, A. G. and Arthur, M. A. 1977. Secular variations in the pelagic realm. In Deep-water carbonate environments. Cook, H. E. and Enos, P., eds. Society of Economic Paleontologists and Mineralogists Special Publication 25:1950. Tulsa, Okla.Google Scholar
Gallagher, L. 1989. Reticulofenestra: a critical review of taxonomy, structure and evolution. pp. 4175in Crux and van Heck 1989.Google Scholar
Gartner, S. 1970. Phylogenetic lineages in the lower Tertiary coccolith genus Chiasmolithus. pp. 930957in Proceedings of the North American Paleontological Convention, Part G.Google Scholar
Haq, B. U. 1973. Transgressions, climatic change and the diversity of calcareous nannoplankton. Marine Geology 15:125130.Google Scholar
Haq, B. U., Premoli Silva, I., and Lohmann, G. P. 1977. Calcareous plankton paleoceanographic evidence for major climatic fluctuations in the early Cenozoic Atlantic Ocean. Journal of Geophysical Research 82:38613876.Google Scholar
Hay, W. W., Mohler, H. P., and Wade, M. E. 1967. Calcareous nannofossils from Nal'chik (northwest Caucasus). Eclogae Geologiae Helvetiae 59:379399.Google Scholar
Healy-Williams, N. 1983. Fourier shape analysis of Globorotalia truncatulinoides from late Quaternary sediments in the southern Indian Ocean. Marine Micropaleontology 8:115.Google Scholar
Hoffman, A., and Kitchell, J. A. 1984. Evolution in a pelagic planktic system: a paleobiologic test of models of multispecies evolution. Paleobiology 10:922.Google Scholar
Jiang, M. J., and Gartner, S. 1986. Calcareous nannofossil succession across the Cretaceous/Tertiary boundary in east-central Texas. Micropaleontology 32:232255.Google Scholar
Kellogg, D. E. 1983. Phenology of morphologic change in radiolarian lineages from deep sea cores: implications for macroevolution. Paleobiology 9:355362.Google Scholar
Lazarus, D. 1986. Tempo and mode of morphologic evolution near the origination of the radiolarian lineage Pterocanium prismatum. Paleobiology 16:175189.Google Scholar
Leckie, R. M. 1989. An oceanographic model for the early evolutionary history of planktonic foraminifera. Paleogeography, Paleoclimatology, Paleoecology 73:107138.Google Scholar
Lipps, J. H. 1970. Plankton evolution. Evolution 24:122.Google Scholar
Lohmann, G. P. 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Mathematical Geology 15:659672.Google Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology 7:230240.CrossRefGoogle Scholar
Malmgren, B., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377389.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. pp. 739785in Farinacci, A., ed. Proceedings of the Second International Planktonic Conference, Roma, Edizione Tecnoscienze, Rome.Google Scholar
Matsuoka, H., and Okada, H. 1990. Time-progressive morphometric changes of the genus Gephyrocapsa in the Quaternary sequence of the tropical Indian Ocean, Site 709. In Backman, J. and Duncan, R. A., eds. Scientific Results of the Ocean Drilling Program 115:255270. Ocean Drilling Program, College Station, Tex.Google Scholar
Maynard-Smith, J. 1976. What determines the rate of evolution? American Naturalist 110:331338.Google Scholar
Moore, T. C. Jr., and Romine, K. 1981. In search of biostratigraphic resolution. In The Deep Sea Drilling Project: a decade of progress. Warme, J. E., Douglas, R. G. and Winterer, E. L., eds. Special Publication 32:317334. Society of Economic Paleontologists and Mineralogists, Tulsa, Okla.Google Scholar
Okada, H., and Thierstein, H. R. 1979. Calcareous nannoplankton-ODP Leg 43, DSDP. In Tucholke, B. E. and Vogt, P. R., eds. Initial Reports of the Deep Sea Drilling Project 43:507573. U.S. Government Printing Office, Washington, D.C.Google Scholar
Perch-Nielsen, K. 1977. Albian to Pleistocene calcareous nannofossils from the western South Atlantic. In Perch-Nielsen, K. and Supko, P. R., eds. Initial Reports of the Deep Sea Drilling Project 39:699823. U.S. Government Printing Office, Washington, D.C.Google Scholar
Perch-Nielsen, K. 1981. New Maastrichtian and Paleocene calcareous nannofossils from Africa, Denmark, the USA and the Atlantic, and some Paleocene lineages. Eclogae Geologiae Helvetiae 74:831863.Google Scholar
Perch-Nielsen, K. 1985. Cenozoic calcareous nannofossils. pp. 427554In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Percival, S. F., and Fischer, A. G. 1977. Changes in calcareous nannoplankton in the Cretaceous-Tertiary biotic crisis at Zumaya, Spain. Evolutionary Theory 2:135.Google Scholar
Pospichal, J. J., and Wise, S. W. Jr. 1990. Calcareous nannofossils across the K/T boundary, ODP Hole 690C, Maud Rise, Weddell Sea. pp. 515532in Barker et al. 1990.CrossRefGoogle Scholar
Pujos, A. 1987. Late Eocene to Pleistocene medium-sized and small-sized “Reticulofenestrids”. Abhandlungen der Geologischen Bundesanstalt 39:239278.Google Scholar
Romein, A. J. T. 1979. Lineages in Early Paleogene calcareous nannoplankton. Utrecht Micropaleontological Bulletins 22:1231.Google Scholar
Roth, P. H. 1987. Mesozoic calcareous nannofossil evolution: relation to paleoceanographic events. Paleoceanography 2:601612.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity, III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.Google Scholar
Spieß, V. 1990. Cenozoic magnetostratigraphy of Leg 113 drill sites, Maud Rise, Weddell Sea, Antarctica. pp. 261318in Barker et al. 1990.Google Scholar
Stott, L. D., and Kennett, J. P. 1990. Antarctic Paleogene planktonic foraminifer biostratigraphy: ODP Leg 113, Sites 689 and 690. pp. 549571in Barker et al. 1990.Google Scholar
Stott, L. D., Kennett, J. P., Shackleton, N. J., and Corfield, R. M. 1990. The evolution of Antarctic surface waters during the Paleogene: inferences from the stable isotopic composition of planktonic foraminifers, ODP Leg 113. pp. 849863in Barker et al. 1990.Google Scholar
Tappan, H., and Loeblich, A. R. Jr. 1973. Evolution of the Oceanic Plankton. Earth Science Reviews 9:207240.Google Scholar
Tucholke, B. E., Vogt, P. R. et al. 1979. Initial reports of the Deep Sea Drilling Project, Vol. 43. U.S. Government Printing Office, Washington, D.C.Google Scholar
van Heck, S., and Prins, B. 1987. A refined nannoplankton zonation for the Danian of the central North Sea. Abhandlungen der Geologischen Bundesanstalt 39:285303.Google Scholar
Varol, O. 1993. Sullivania, a new genus of Paleogene coccoliths. Journal of Micropaleontology 11:141150.Google Scholar
Watabe, N., and Wilbur, K. M. 1966. Effects of temperature on growth, calcification, and coccolith form in Coccolithus huxleyi (Coccolithineae). Limnology and Oceanography 11:567575.Google Scholar
Wei, K.-Y., and Kennett, J. P. 1986. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1:6784.Google Scholar
Wei, W. 1993. Clarification of Coccolithus crassus Bramlette and Sullivan, an index fossil of coccolithophoridae. Journal of Paleontology 67:135138.Google Scholar
Wei, W., and Pospichal, J. J. 1991. Danian calcareous nannofossil succession at ODP Site 738 in the Southern Indian Ocean. In Barron, J. and Larsen, B., eds. Scientific Results of the Ocean Drilling Program 119:495512. Ocean Drilling Program, College Station, Tex.Google Scholar
Wei, W., Liu, L., and Bukry, D. 1993. Reappraisal of three calcareous nannofossils species: Coccolithus crassus, Toweius magnicrassus, and Toweius callosus. Journal of Micropalaeontology 12:9198.Google Scholar
Winter, A., Reiss, Z., and Luz, B. 1979. Distribution of living coccolithophore assemblages in the Gulf of Elat. Marine Micropaleontology 4:197223.Google Scholar
Young, J. R. 1989. Observations on heterococcolith rim structure and its relationship to developmental processes. pp. 120in Crux and van Heck 1989.Google Scholar
Young, J. R. 1990. Size variation of Neogene Reticulofenestra coccoliths from Indian Ocean DSDP Cores. Journal of Micropalaeontology 9:7186.Google Scholar
Young, J. R. 1994. Functions of coccoliths. pp. 6382In Winter, A. and Siesser, W. G., eds. Coccolithophores. Cambridge University Press, Cambridge.Google Scholar
Zachos, J. C., Lohmann, K. C., Walker, J. C. G., and Wise, S. W. Jr. 1993. Abrupt climate change and transient climates during the Paleogene: a marine perspective. Journal of Geology 101:191213.Google Scholar