Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:48:06.776Z Has data issue: false hasContentIssue false

Morphological diversity of Carboniferous arthropods and insights on disparity patterns through the Phanerozoic

Published online by Cambridge University Press:  08 April 2016

Andrea Stockmeyer Lofgren
Affiliation:
Department of Earth and Environmental Sciences, The University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7059. E-mail: andrea.lofgren@alumni.duke.edu
Roy E. Plotnick*
Affiliation:
Department of Earth and Environmental Sciences, The University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7059. E-mail: plotnick@uic.edu
Peter J. Wagner
Affiliation:
Department of Geology, The Field Museum, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605. E-mail: pwagner@fieldmuseum.org
*
*Corresponding author

Abstract

Previous studies of overall arthropod disparity have compared Cambrian and Recent biotas, without considering taxa of intermediate age. This study explored morphological diversity among Carboniferous arthropods, primarily from the well-known Westphalian Mazon Creek Lagerstätte. Over 100 arthropod species, belonging to 48 orders, were examined. The data set is composed of nearly equal numbers of crustacean, arachnid, and insect species, with lower numbers of merostomes. Trilobites have not been found at Mazon Creek. However, some Late Carboniferous trilobite species were included in order to obtain a more representative picture of global Carboniferous arthropod disparity.

The absence, presence, or state of 66 shared characters was recorded for each species, as well as individual autapomorphies. Overall disparity was determined from the Euclidean distance analysis between taxa or variance along principal coordinates analyses (PCO) axes. Results indicate that arthropod disparity has not been greatly reduced throughout the Phanerozoic as was previously suggested. However, the regions of occupied morphospace have rotated over time.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adouette, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud'homme, B., and De Rosa, R. 2000. The new animal phylogeny: reliability and implications. Proceedings of the National Academy of Sciences USA 97:44534456.Google Scholar
Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., and Lake, J. A. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489493.Google Scholar
Allison, P. A., and Briggs, D. E. G. 1991. The taphonomy of soft-bodied animals. Pp. 120140in Donovan, S. K., ed. The processes of fossilization. Columbia University Press, New York.Google Scholar
Baird, G. 1979. Lithology and fossil distribution, Francis Creek Shale in northeastern Illinois. Pp. 4167in Nitecki, 1979a.CrossRefGoogle Scholar
Baird, G. 1997. Geologic settings of the Mazon Creek area fossil deposit. Pp. 1620in Shabica, and Hay, 1997.Google Scholar
Baird, G., and Shabica, C. 1980. The Mazon Creek depositional event: examination of Francis Creek and analogous facies in the Midcontinent Region. Pp. 7992in Langenheim, R. and Mann, C., eds. Middle and Late Pennsylvanian Strata on Margin of Illinois Basin [Guidebook]. Tenth Annual Meeting of the Society of Economic Paleontologists and Mineralogists, Great Lakes Section, Danville.Google Scholar
Baird, G., Sroka, S., Shabica, C., and Kuecher, G. 1986. Taphonomy of Middle Pennsylvanian Mazon Creek area fossil localities, Northeast Illinois: significance of exceptional fossil preservation in syngenetic concretions. Palaios 1:271285.Google Scholar
Beall, B. 1997. Arachnida. Pp. 140145in Shabica, and Hay, 1997.Google Scholar
Blaxter, M. 2001. Sum of the arthropod parts. Nature 413:121122.Google Scholar
Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science 246:241243.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992a. Morphological disparity in the Cambrian. Science 256:16701673.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992b. Cambrian and Recent morphological disparity [response to Foote and Gould, and Lee]. Science 258:18171818.Google Scholar
Brooks, H. K., et al. 1969a. Arthropoda 4, Crustacea (except Ostracoda), Myriapoda-Hexapoda. Part R ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Brooks, H. K., Glaessner, M. F., Hahn, G., Hessler, R. R., Holthuis, L. B., Manning, R. B., Moore, R. C., and Rolfe, W. D. I. 1969b. Malacostraca. Pp. R295R566in Brooks, H. K. et al. 1969a.Google Scholar
Budd, G. A. 2002. A paleontological solution to the arthropod head problem. Nature 417:271275.Google Scholar
Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Paleozoic echinoderms. Pp. 61100in Campbell, K. S. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Carpenter, F. M. 1943. Carboniferous insects from the vicinity of Mazon Creek, Illinois. State of Illinois Scientific Papers 3:920.Google Scholar
Carpenter, F. M. 1992. Systematic descriptions of the Superclass Hexapoda. Pp. 1503in Carpenter, F. M., Arthropoda 4, Hexapoda. Part R of Kaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas Press, Lawrence.Google Scholar
Carpenter, F. M., and Richardson, E. Jr. 1971. Additional insects in Pennsylvanian concretions from Illinois. Psyche 78:267295.Google Scholar
Earth Science Club of Northern Illinois (ESCONI). 1989. Keys to identify Pennsylvanian fossil animals of the Mazon Creek area. Downers Grove, Ill.Google Scholar
Eble, G. J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26:5679.Google Scholar
Edgecombe, G. D., ed. 1998. Arthropod fossils and phylogeny. Columbia University Press, New York.Google Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.Google Scholar
Foote, M. 1989. Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63:880885.Google Scholar
Foote, M. 1991a. Analysis of morphological data. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:5968. Paleontological Society, Knoxville, Tenn.Google Scholar
Foote, M. 1991b. Morphologic patterns of diversification: examples from trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1992a. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Foote, M. 1992b. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Science USA 89:73257329.Google Scholar
Foote, M. 1993a. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Foote, M. 1993b. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.Google Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.Google Scholar
Foote, M. 1996a. Models of morphological diversification. Pp. 6286in Jablonski, D., Erwin, D. H., and Lipps, J., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1996b. Ecological controls in the evolutionary recovery of post-Paleozoic crinoids. Science 274:14922495.Google Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.Google Scholar
Foote, M., and Gould, S. J. 1992. Cambrian and Recent morphological disparity. Science 258:1816.Google Scholar
Giribet, G., and Ribera, C. 2000. A review of arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization. Cladistics 16:204231.Google Scholar
Giribet, G., Edgecombe, G. D., and Wheeler, W. C. 2001. Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157161.Google Scholar
Glaessner, M. F. 1969. Cycloidea. Pp. R567R570in Brooks, H. K. et al. 1969a.Google Scholar
Gould, S. 1989. Wonderful life: the Burgess Shale and the nature of history. W. W. Norton, New York.Google Scholar
Gould, S. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411423.Google Scholar
Gould, S. 1993. How to analyze Burgess Shale disparity: a reply to Ridley. Paleobiology 19:522523.Google Scholar
Hannibal, J. 1997. Myriapods and arthropleurids. Pp. 172183in Shabica, and Hay, 1997.Google Scholar
Harrington, H., Henningsmoen, G., Howell, B., Jaanusson, V., Lochman-Balk, C., Moore, R., Poulsen, C., Rasetti, F., Richter, E., Richter, R., Schmidt, H., Sdzuy, K., Struve, W., Stubblefield, C., Tripp, R., Weller, J., and Whittington, H. B. 1959. Trilobita. Pp. O38O540in Harrington, H. J. et al. Arthropoda 1, Arthropoda-General Features, Protarthropoda, Euarthropoda-General Features, Trilobitomorpha. Part O ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas Press, Lawrence.Google Scholar
Hessler, R. R. 1969. Cephalocarida. Pp. R120R128in Brooks, H. K. et al. 1969a.Google Scholar
Hoffman, R. L. 1969. Myriapoda, exclusive of Insecta. Pp. R572R606in Brooks, H. K. et al. 1969a.Google Scholar
Huelsenbeck, J. P. 1991. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology 40:458469.Google Scholar
Hwang, U. W., Friedrich, M., Tautz, D., Park, C. J., and Kim, W. 2001. Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154157.Google Scholar
Johnson, R., and Richardson, E. Jr. 1966. A remarkable Pennsylvanian fauna from the Mazon Creek area, Illinois. Journal of Geology 74:626631.Google Scholar
Kjellesvig-Waering, E. 1948. The Mazon Creek eurypterid: a revision of the genus Adelophthalmus. State of Illinois Scientific Papers 3:346.Google Scholar
Kjellesvig-Waering, E. 1969. Scorpionida: the holotype of Mazonia woodiana Meek and Worthen 1868. Fieldiana (Geology) 12:171190.Google Scholar
Labandeira, C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics 28:153193.Google Scholar
Labandeira, C. 2001. Rise and diversification of insects. Pp. 8288in Briggs, D. E. G. and Crowther, P. R., eds. Palaeobiology II. Blackwell Science, London.Google Scholar
Labandeira, C., and Sepkoski, J. J. Jr. 1993. Insect diversity in the fossil record. Science 261:310315.Google Scholar
Lee, M. 1992. Cambrian and Recent morphological disparity. Science 258:18161817.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
Martin, R. E. 1999. Taphonomy: a process approach. Cambridge University Press, Cambridge.Google Scholar
Mikulic, D. 1997. Xiphosura. Pp. 134139in Shabica, and Hay, 1997.Google Scholar
Mundel, P. 1979. The centipedes (Chilopoda) of the Mazon Creek. Pp. 361378in Nitecki, 1979a.CrossRefGoogle Scholar
Newman, W. A., Zullo, V. A., and Withers, T. H. 1969. Cirripedia. Pp. R206R295in Brooks, H. K. et al. 1969a.Google Scholar
Nitecki, M. H., ed. 1979a. Mazon Creek fossils. Academic Press, New York.Google Scholar
Nitecki, M. H., ed. 1979b. Mazon Creek fauna and flora: a hundred years of investigation. Pp. 111in Nitecki, 1979a.Google Scholar
Petrunkevitch, A. 1946. Paleozoic Arachnida: an inquiry into their evolutionary trends. State of Illinois Scientific Papers 3:972.Google Scholar
Petrunkevitch, A. 1955. Arachnida. Pp. P42P162in Størmer, L. et al. Arthropoda 2, Chelicerata with sections on Pycnogonida and Palaeoisopus. Part P ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Plotnick, R. E. 1997. Eurypterida. Pp. 208210in Shabica, and Hay, 1997.Google Scholar
Poe, S. 1998. Sensitivity of phylogenetic estimation to taxonomic sampling. Systematic Biology 47:1831.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology: towards a nomothetic paleontology. Systematic Zoology 23:305322.Google Scholar
Raymond, P. 1945. Xiphosura in the Langford collection. State of Illinois Scientific Papers 3:48.Google Scholar
Reyment, R. 1991. Multidimensional paleobiology. Pergamon, Oxford.Google Scholar
Richardson, E. 1956a. Pennsylvanian invertebrates of the Mazon Creek area, Illinois: introduction. Fieldiana (Geology) 12:312.Google Scholar
Richardson, E. 1956b. Pennsylvanian invertebrates of the Mazon Creek area, Illinois: insects. Fieldiana (Geology) 12:1555.Google Scholar
Richardson, E. 1956c. Pennsylvanian invertebrates of the Mazon Creek area, Illinois: Trilobitomorpha: Arthropleurida. Fieldiana (Geology) 12:7276.Google Scholar
Richardson, E. S., and Johnson, R. G. 1971. The Mazon Creek Faunas. Proceedings of the North American Paleontological Convention (1969). Part 1:12221235.Google Scholar
Rolfe, W. D. I. 1969. Arthropleurida. Pp. R607R620in Brooks, H. K. et al. 1969a.Google Scholar
Roy, K. 1994. Effects of the Mesozoic Marine Revolution on the taxonomic, morphologic, and biogeographic evolution of a group: aporrhaid gastropods during the Mesozoic. Paleobiology 20:274296.CrossRefGoogle Scholar
Roy, K., and Foote, M. 1997. Morphological approaches to measuring biodiversity. Trends in Ecology and Evolution 12:277281.Google Scholar
Schram, F. R. 1969. Some middle Pennsylvanian Hoplocarida (Crustacea) and their phylogenetic significance. Fieldiana (Geology) 12:235289.Google Scholar
Schram, F. R. 1970. Isopod from the Pennsylvanian of Illinois. Science 169:854855.Google Scholar
Schram, F. R. 1973. On some Phyllocarids and the origin of the Hoplocarida. Fieldiana (Geology) 26:7794.Google Scholar
Schram, F. R. 1974a. The Mazon Creek caridoid Crustacea. Fieldiana (Geology) 30:965.Google Scholar
Schram, F. R. 1974b. Paleozoic Pericarida of North America. Fieldiana (Geology) 33:2128.Google Scholar
Schram, F. R., and Rolfe, W. D. I. 1982. New euthycarcinoid arthropods from the Upper Pennsylvanian of France and Illinois. Journal of Paleontology 56: 1434–1430.Google Scholar
Schram, F. R. 1997. Euthycarcinoids and thylacocephalans. Pp. 211214in Shabica, and Hay, 1997.Google Scholar
Schram, F. R., Rolfe, W. D. I., and Hay, A. 1997a. Crustacea. Pp. 155171in Shabica, and Hay, 1997.Google Scholar
Schram, F. R., Vonk, R., and Hoff, C. J. H. 1997b. Mazon Creek Cycloidea. Journal of Paleontology 71:261284.Google Scholar
Shabica, C. 1979. Pennsylvanian sedimentation in northern Illinois: examination of deltaic models. Pp. 1340in Nitecki, 1979a.Google Scholar
Shabica, C., and Hay, A. 1997. Richardson's guide to the fossil fauna of Mazon Creek. Northeastern Illinois University, Chicago.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Paleozoic echinoderms. Palaeontology 31:799828.Google Scholar
Smith, L. H., and Lieberman, B. S. 1999. Disparity and constraint in olenelloid trilobites and the Cambrian Radiation. Paleobiology 25:459470.Google Scholar
Størmer, L. 1955. Merostomata. Pp. P4P41in Størmer, L. et al. Arthropoda 2, Chelicerata with sections on Pycnogonida and Palaeoisopus. Part P ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Tasch, P. 1969. Branchiopoda. Pp. R128R121in Brooks, H. K. et al. 1969a.Google Scholar
Wagner, P. J. 1995a. Systematics and the fossil record: a review. Palaios 10:383388.Google Scholar
Wagner, P. J. 1995b. Testing evolutionary constraints hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.Google Scholar
Wagner, P. J. 1997. Patterns of morphological diversification among the Rostroconchia. Paleobiology 23:115145.Google Scholar
Wagner, P. J. 2000. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Systematic Biology 49:6586.Google Scholar
Wilkinson, M. 1994. Common cladistic information and its consensus representation: reduced Adams and reduced cladistic consensus trees and profiles. Systematic Biology 43:343368.Google Scholar
Wills, M. A. 1998. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society 65:455500.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93131.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., and Wilkinson, M. 1995. The significance of fossils in understanding arthropod evolution. Verhandelung Deutsch Zoologische Gesammung 88:203215.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa. Pp. 33105in Edgecombe, 1998.Google Scholar