Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:11:14.215Z Has data issue: false hasContentIssue false

High-latitude settings promote extreme longevity in fossil marine bivalves

Published online by Cambridge University Press:  17 April 2017

David K. Moss
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244, U.S.A. E-mail: dmoss@vassar.edu.
Linda C. Ivany
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244, U.S.A.
Robert B. Silver
Affiliation:
Department of Biology, and the Forensic and National Security Sciences Institute, Syracuse University, Syracuse, New York 13244, U.S.A.
John Schue
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244, U.S.A. Work was done at Syracuse University while a student at Liverpool High School, Liverpool, New York 13090, U.S.A.
Emily G. Artruc
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244, U.S.A. Work was done at Syracuse University while a student at the State University of New York’s College of Environmental Science and Forestry, Syracuse, New York 13210, U.S.A.

Abstract

One of the longest-lived, noncolonial animals on the planet today is a bivalve that attains life spans in excess of 500 years and lives in a cold, seasonally food-limited setting. Separating the influence of temperature and food availability on life span in modern settings is difficult, as these two conditions covary. The life spans of fossil animals can provide insights into the role of environment in the evolution of extreme longevity that are not available from studies of modern taxa. We examine bivalves from the unique, nonanalogue, warm and high-latitude setting of Seymour Island, Antarctica, during the greenhouse intervals of the Late Cretaceous and Paleogene. Despite significant sampling limitations, we find that all 11 species examined are both slow growing and long-lived, especially when compared with modern bivalves living in similar temperature settings. While cool temperatures have long been thought to be a key factor in promoting longevity, our findings suggest an important role for caloric restriction brought about by the low and seasonal light regime of the high latitudes. Our life-history data, spanning three different families, emphasize that longevity is in part governed by environmental rather than solely phylogenetic or ecologic factors. Such findings have implications for both modern and ancient latitudinal diversity gradients, as a common correlate of slow growth and long life is delayed reproduction, which limits the potential for evolutionary change. While life spans of modern bivalves are well studied, data on life spans of fossil bivalves are sparse and largely anecdotal. Life histories of organisms from deep time can not only elucidate the controls on life span but also add a new dimension to our understanding of macroevolutionary patterns.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abele, D., Strahl, J., Brey, T., and Philipp, E.. 2008. Imperceptible senescene: ageing in the ocean quahog Arctica islandica . Free Radical Research 42:474480.Google Scholar
Abele, D., Brey, T., and Philipp, E.. 2009. Bivalve models of aging and the determination of molluscan lifespans. Experimental Gerontology 44:307315.Google Scholar
Ahn, I., Surh, J., Park, Y., Kwon, H., Choi, K., Kang, S., Choi, H., Kim, K., and Chung, H.. 2003. Growth and seasonal energetics of the Antarctic bivalve Laternuala elliptica from King George Island, Antarctica. Marine Ecology Progress Series 257:99110.Google Scholar
Alroy, J. 2010. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.Google Scholar
Alvarez, M., Del Rio, C. J., and Marenssi, S.. 2014. Revision del genero Retrotapes del Rio (Bivalvia:Veneridae) en el Eoceno de la Antartida. Ameghiniana 51:6178.Google Scholar
Alvarez, M. J., and Pérez, D. E.. 2016. Gerontic intraspecific variation in the Antarctic bivalve Retrotapes antarcticus . Ameghiniana 53:485494.Google Scholar
Ambrose, W. G., Renaud, P. E., Locke, W. L., Cottier, F. R., Berge, J., Carroll, M. L., Levin, B., and Ryan, S.. 2011. Growth line deposition and variability in growth of two circumpolar bivalves (Serripes groenlandicus, and Clinocardium ciliatum). Polar Biology 35:345354.Google Scholar
Aronson, R. B., Blake, D. B., and Oji, T.. 1997. Retrograde community structure in the late Eocene of Antarctica. Geology 25:903906.Google Scholar
Aronson, R. B., Moody, R. M., Ivany, L. C., Blake, D. B., Werner, J. E., and Glass, A.. 2009. Climate change and trophic response of the Antarctic bottom fauna. PLoS ONE 4:e4385.Google Scholar
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.. 2008. Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research 113:127.Google Scholar
Austad, S. N. 1989. Life extension by dietary restriction in the bowl and doil spider, Frontinella pyramitela . Experimental Gerontology 24:8392.Google Scholar
Barnes, D. K. A., and Clarke, A.. 1995. Seasonality of feeding activity in Antarctic suspension feeders. Polar Biology 15:335340.CrossRefGoogle Scholar
Beard, J. A., Ivany, L. C., and Runnegar, B.. 2015. Gradients in seasonality and seawater oxygen isotopic composition along the early Permian Gondwanan coast, SE Australia. Earth and Planetary Science Letters 425:219231.Google Scholar
Beierlein, L., Nehrke, G., Trofimova, T., and Brey, T.. 2015. Bivalve shells—unique high-resolution archives of the environmental past. Pp. 173182. in G. Lohman, H. Meggers, V. Unnithan, D. Wolf-Gladrow, J. Notholt, and A. Bracher, eds. Towards an interdisciplinary approach in Earth system science. Springer International, Cham, Switzerland.Google Scholar
Belding, D 1910. The growth and habits of the sea clam (Macta solidissima). Reports of the Commissioner of Fish and Game, 1909. Pp. 26–41.Google Scholar
Berke, S. K., Jablonski, D., Krug, A. Z., Roy, K., and Tomasovych, A.. 2013. Beyond Bergmann’s rule: size-latitude relationships in marine Bivalvia world-wide. Global Ecology and Biogeography 22:173183.Google Scholar
Bertness, M. D., Garrity, S. D., and Levings, S. C.. 1981. Predation pressure and gastropod foraging: a tropical-temperate comparison. Evolution 35:9951007.Google ScholarPubMed
Beu, A. G. 2009. Before the ice: biogeography of Antarctic Paleogene molluscan faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 284:191226.Google Scholar
Brandhorst, S., Choi, I. Y., Wei, M., Cheng, C. W., Sedrakyan, S., Navarrete, G., Dubeau, L., Yap, L. P., Park, R., Vinciguerra, M., Di Biase, S., Mirzaei, H., Mirisola, M. G., Childress, P., Ji, L., Groshen, S., Penna, F., Odetti, P., Perin, L., Conti, P. S., Ikeno, Y., Kennedy, B. K., Cohen, P., Morgan, T. E., Dorff, T. B., and Longo, V. D.. 2015. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metabolism 22:8699.Google Scholar
Brey, T., and Clarke, A.. 1993. Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments: are there unique adaptations? Antarctic Science 5:253266.CrossRefGoogle Scholar
Brey, T., and Hain, S.. 1992. Growth, reproduction and production of Lissarca notorcadensis (Bivalvia: Philobryidae) in the Weddell Sea, Antarctica. Marine Ecology Progress Series 82:219226.CrossRefGoogle Scholar
Brey, T., and Mackensen, A.. 1997. Stable isotopes prove shell growth bands in the Antarctic bivalve Laternual elliptica to be formed annually. Polar Biology 17:465468.Google Scholar
Brey, T., Peck, L. S., Gutt, J., Hain, S., and Arntz, W. E.. 1995. Population dynamics of Magellania fragilis, a brachiopod dominating a mixed-bottom macrobenthic assemblage on the Antarctic shelf. Journal of the Marine Biological Association of the United Kingdom 75:857869.Google Scholar
Brey, T., Voigt, M., Jenkins, K., and Ahn, I.. 2011. The bivalve Laternula elliptica at King George Island—a biological recorder of climate forcing in the West Antarctic Peninsula region. Journal of Marine Systems 88:542552.CrossRefGoogle Scholar
Brockington, S. 2001. The seasonal energetics of the Antarctic bivalve Laternaula elliptica (King and Broderip) at Rother Point, Adelaide Island. Polar Biology 24:523530.Google Scholar
Brockington, S., and Clarke, A.. 2001. The relative influence of temperature and food on the metabolism of a marine invertebrate. Journal of Experimental Marine Biology and Ecology 258:8799.Google Scholar
Brodte, E., Knust, R., Pörtner, H. O., and Arntz, W. E.. 2006. Biology of the Antarctic eelpout Pachycara brachycephalum . Deep-Sea Research, part II (Topical Studies in Oceanography) 53:11311140.Google Scholar
Buick, D. P., and Ivany, L. C.. 2004. 100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica. Geology 32:921924.CrossRefGoogle Scholar
Burchett, M. S., Devries, A., and Briggs, A. J.. 1984. Age determination and growth of Dissostichus mawsoni (Norman, 1937) (Pisces, Nototheniidae) from McMurdo Sound (Antarctica). Cybium 8:2731.Google Scholar
Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A., and Reynolds, D. J.. 2013. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica . Palaeogeography, Palaeoclimatology, Palaeoecology 373:141151.Google Scholar
Camus, L., Gulliksen, B., Depledge, M. H., and Jones, M. B.. 2005. Polar bivalves are characterized by high antioxidant defences. Polar Research 24:111118.Google Scholar
Clark, G. 1974. Growth lines in invertebrate skeletons. Annual Review of Earth and Planetary Science 2:7799.Google Scholar
Clarke, A., Prothero-Thomas, E., Beaumont, J., Chapman, A., and Brey, T.. 2004. Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biology 28:6271.Google Scholar
Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R., and Anderson, R. M.. 2014. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications 5:3557.Google Scholar
Dexter, T. A., and Kowalewski, M.. 2013. Jackknife-corrected parametric bootstrap estimates of growth rates in bivalve mollusks using nearest living relatives. Theoretical Population Biology 90:3648.Google Scholar
Douglas, P. M., Affek, H. P., Ivany, L. C., Houben, A. J., Sijp, W. P., Sluijs, A., Schouten, S., and Pagani, M.. 2014. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. Proceedings of theNational Academy of Science USA 111:6582–6587.CrossRefGoogle Scholar
Dudley, E., and Vermeij, G.. 1980. Predation in time and space: drilling in the gastropod Turritella . Paleobiology 4:436441.Google Scholar
Dutton, A., Huber, B. T., Lohmann, K. C., and Zinsmeister, W. J.. 2007. High-resolution stable isotope profiles of a dimitobelid belemnite: implications for paleodepth habitat and late Maastrichtian climate seasonality. Palaios 22:642650.Google Scholar
Dutton, A. L., Lohmann, K. C., and Zinsmeister, W. J.. 2002. Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica. Paleoceanography 17(2), 113.CrossRefGoogle Scholar
Fanestil, D., and Barrows, C.. 1965. Aging in the rotifer. Journal of Gerontology 20:462469.Google Scholar
Feldmann, R. M., and Woodburne, M. O., eds. 1988. Geology and paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America Memoir 169.Google Scholar
Francis, J. E., and Poole, I.. 2002. Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeography, Palaeoclimatology, Palaeoecology 182:4764.Google Scholar
Freestone, A. L., Osman, R. W., Ruiz, G. M., and Torchin, M. E.. 2011. Stronger predation in the tropics shapes species richness patterns in marine communitites. Ecology 92:983993.Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L.. 2001. Effects of size and temperature on metabolic rate. Science 293:22482251.CrossRefGoogle ScholarPubMed
Goodwin, D. H., Flessa, K. W., Schöne, B. R., and Dettman, D. L.. 2001. Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis. Palaios 16:387398.Google Scholar
Hallmann, N., Schöne, B. R., Strom, A., and Fiebig, J.. 2008. An intractable climate archive—sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 269:115126.Google Scholar
Harper, E. M., and Peck, L.. 2003. Predatory behaviour and metabolic costs in the Antarctic muricid gastropod Trophon longstaffi . Polar Biology 26:208217.Google Scholar
Harper, E. M., and Peck, L.. 2016. Latitudinal and depth gradients in marine predation pressure. Global Ecology and Biogeography 25:670678.Google Scholar
Hay, W. W., and Floegel, S.. 2012. New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews 115:262272.Google Scholar
Hillebrand, H. 2004. On the generality of the latititudinal diversity gradient. American Society of Naturalists 163:192211.Google Scholar
Huber, M., and Sloan, L. C.. 2001. Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate. Geophysical Research Letters 28:34813484.CrossRefGoogle Scholar
Ivany, L. C. 2012. Reconstructing paleoseasonality from accretionary skeletal carbonates—challenges and opportunities. In Linda C. Ivany and Brian T. Huber, eds. Reconstructing Earth’s deep-time climate—the state of the art in 2012, Paleontological Society Short Course, November 3, 2012. Paleontological Society Papers 18:133–165.CrossRefGoogle Scholar
Ivany, L. C., and Runnegar, B.. 2010. Early Permian seasonality from bivalve 18O and implications for the oxygen isotopic composition of seawater. Geology 38:10271030.Google Scholar
Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D., Glass, A., Aronson, R., and Moody, R.. 2008. Eocene climate record of a high souther latitude continental shelf: Seymour Island, Antarctica. Geological Society of America Bulletin 120:659678.Google Scholar
Jones, D. S. 1980. Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology 6:331340.Google Scholar
Jones, D. S 1983. Sclerochronology: reading the record of the molluscan shell: annual growth increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity. American Scientist 71:384391.Google Scholar
Jones, D. S., and Gould, S. J.. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology 25:158187.CrossRefGoogle Scholar
Jones, D. S., and Quitmyer, I. R.. 1996. Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340346.Google Scholar
Jones, D. S., Thompson, I., and Ambrose, W. G. J.. 1978. Age and growth rate determinations for the Atlantic surf clam Spisula solidissima (Bivalvia: Mactracea), based on interal growth lines in shell cross-sections. Marine Biology 47:6370.Google Scholar
Jones, D. S., Williams, D. F., and Arthur, M. A.. 1983. Growth history and ecology of the Atlantic surf clam, Spisula solidissima (Dillwyn), as revealed by stable isotopes and shell increments. Journal Experimental Marine Biology and Ecology 73:225242.Google Scholar
Jones, D. S., Arthur, M. A., and Allard, D. J.. 1989. Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Marine Biology 102:225234.Google Scholar
Kelley, P., and Hansen, T.. 2007. Latitudinal patterns in naticid gastropod predation along the east coast of the United States: a modern baseline for interpreting temporal patterns in the fossil record. In R. G. Bromley, L. A. Buatois, G. Mángano, J. F. Genise, and R. N. Melchor, eds. Sediment–organism interactions: a multifaceted ichnology. SEPM Special Publication 88:287–289.Google Scholar
Kemp, D. B., Robinson, S. A., Crame, J. A., Francis, J. E., Ineson, J., Whittle, R. J., Bowman, V., and O’Brien, C.. 2014. A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene. Geology 42:583586.Google Scholar
Klass, M. 1977. Aging in the nematode Caenorhabditis elegans: major biological and enivronmental factors influencing life span. Mechanisms of Ageing and Development 6:413429.Google Scholar
Krantz, D. E., Jones, D. S., and Williams, D. F.. 1984. Growth rates of the sea scallop, Placopecten magellanicus, determine from the 18O/16O record in shell calcite. Biological Bulletin 167:186199.Google Scholar
Lakowski, B., and Hekimi, S.. 1996. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:10101013.Google Scholar
Lawver, L. A., Gahagan, L. M., and Coffin, M. F.. 1992. The development of paleoseaways around Antarctica, Pp. 730. in J. P. Kennett, and Detlef A. Warkne, eds. The Antarctic paleoenvironment: a perspective on global change. Wiley, Hoboken, N.J.Google Scholar
Lewis, D. E., and Cerrato, R. M.. 1997. Growth uncoupling and the relationship between shell growth and metabolism in the soft shell clam Mya arenaria . Marine Ecology Progress Series 158:177189.Google Scholar
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidova, D.. 2013. World ocean atlas. https://www.nodc.noaa.gov/OC5/woa13/woa13data.html.Google Scholar
Lomovasky, B. J., Brey, T., Morriconi, E., and Calvo, J.. 2002. Growth and reproduction of the venerid bivalve Eurhomalea exalbida in the Beagle Channel, Tierra del Fuego. Journal of Sea Research 48:209216.Google Scholar
Lutz, R. A., and Rhoads, M. C.. 1980. Growth patterns within the molluscan shell: an overview. Pp. 203254. in M. C. Rhoads, and R. A. Lutz, eds. Skeletal growth of aquatic organisms: biological records of environmental change. Plenum, New York.Google Scholar
MacDonald, B., and Thomas, M.. 1980. Age determination of the soft-shell clam Mya arenaria using shell internal growth lines. Marine Biology 58:105109.Google Scholar
Macellari, C. 1984. Late Cretaceous stratigraphy, sedimentology, and macropaleontology of Seymour Island, Antarctic Peninsula. Ohio State University, Columbus.Google Scholar
Macellari, C 1988. Stratigrpahy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island. Geological Society of America Memoir 169:2533.Google Scholar
Marshall, C. R. 1995. Distinguishing between sudden and gradual extinctions in the fossil record: predicting the position of the Cretaceous–Tertiary iridium anomaly using the ammonite fossil record on Seymour Island, Antarctica. Geology 23:731734.Google Scholar
Masoro, E. J. 2000. Caloric restriction and aging: an update. Experimental Gerontology 35:299305.Google Scholar
McKay, C. M., Crowell, M. F., and Maynard, L. A.. 1935. The effect of retarded growth upon the length of life span and upon the ultimate body size. Journal of Nutrition 10:6379.Google Scholar
Mette, M. J., Wanamaker, A. D., Carroll, M. L., Ambrose, W. G., and Retelle, M. J.. 2016. Linking large-scale climate variability with Arctica islandica shell growth and geochemistry in northern Norway. Limnology and Oceanography 61:748764.Google Scholar
Moss, D. K., Ivany, L. C., Judd, E. J., Cummings, P. C., Bearden, C. E., Kim, J., Artruc, E. G., and Driscoll, J. R.. 2016. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proceedings of the Royal Society of London B 283:10.1098/rspb.2016.1364.Google Scholar
Neville, W. 1945. The quahog fishery of Rhode Island. Department of Agriculture and Conservation of the State of Rhode Island, Providence, R.I.Google Scholar
Norton, I. O., and Sclater, J. G.. 1979. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. Journal of Geophysical Research (Solid Earth) 84:68036830.Google Scholar
Pannella, G. 1976. Tidal growth patterns in recent and fossil mollusc bivalve shells: a tool for the reconstruction of paleotides. Naturwissenschaften 63:539543.Google Scholar
Pannella, G., and MacClintock, C.. 1968. Biological and environmental rhythms reflected in molluscan shell growth. Paleontological Society Memoir 2:6480.Google Scholar
Peck, L. S., and Conway, L. Z.. 2000. The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In E. M. Harper, ed. The evolutionary biology of the bivalvia. Geological Society of London Special Publication 177:441–450.Google Scholar
Peck, L. S., Brockington, S., and Brey, T.. 1997. Growth and metabolism in the Antarctic brachiopod Liothyrella unva . Philosophical Transactions of the Royal Society of London B 352:851858.Google Scholar
Peck, L. S., Convey, P., and Barnes, D. K.. 2006. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews of the Cambridge Philosophical Society 81:75109.Google Scholar
Peterson, C. H., Duncan, P. B., Summerson, H. C., and Safrit, G. W.. 1983. A mark-recapture test of annual periodicity of internal growth band deposition in shells of hard clams, Mercenaria mercenaria, from a population along the southeastern United States. Fishery Bulletin 81:765799.Google Scholar
Philipp, E., Brey, T., Heilmayer, O., Abele, D., and Portner, H.. 2006. Physiological ageing in a temperate and a polar swimming scallop. Marine Ecology Progress Series 307:187198.Google Scholar
Picken, G. B. 1980. The distribution, growth, and reproduction of the Antarctic Limpet Nacella (Patinigera) concinna (Strebel, 1908). Journal of Experimental Marine Biology and Ecology 42:7185.Google Scholar
Porebski, S. 1995. Facies architecture in a tectonically-controlled incised-valley estuary: La Meseta Formation (Eocene) of Seymour Island, Antarctic Peninsula. Studia Geologica Polonica 107:797.Google Scholar
Porebski, S 2000. Shelf-valley compound fill produced by fault subsidence and eustatic sea-level changes, Eocene La Meseta Formation, Seymour Island, Antarctica. Geology 28:147150.Google Scholar
Rhoads, D. C., and Lutz, R. A.. 1980). Skeletal growth of aquatic organisms: biological records of environmental change. Topics in Geobiology, Vol. 1. Plenum, New York.Google Scholar
Rhoads, D. C., and Pannnella, G.. 1970. The use of molluscan shell growth patterns in ecology and paleoecology. Lethaia 3:143161.Google Scholar
Richardson, C. A., Crisp, D. J., Runham, N. W., and Gruffydd, L. D.. 1980. The use of tidal growth bands in the shell of Cerastoderma edule to measure seasonal growth rates under cool temperate and sub-Arctic conditions. Journal of the Marine Biological Association of the United Kingdom 60:977989.CrossRefGoogle Scholar
Ridgway, I., Bowden, T. J., Roman-Gonzalez, A., and Richardson, C. A.. 2014. Resistance to oxidative stress is not associated with the exceptional longevity of the freshwater pearl mussel, Margaritifera margaritifera nor three unionid species. Aquatic Sciences 76:259267.Google Scholar
Ridgway, I. D., Richardson, C. A., and Austad, S. N.. 2011. Maximum shell size, growth rate, and maturation age correlate with longevity in bivalve molluscs. Journals of Gerontology A (Biological Sciences and Medical Sciences ) 66:183190.Google Scholar
Roy, K., Jablonski, D., and Martien, K.. 2000). Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences USA 97:13150–13155.Google Scholar
Rubner, M. 1908. Das problem der Lebensdauer und seine Beziehungen sum Wachstum und Ernahrung. Oldenbourg, Munich.Google Scholar
Sadler, P. M. 1988. Geometry and stratification of uppermost Cretacous and Paleogene units on Seymour Island, northern Antarctic Peninsula. In R. M. Feldmann and M. O. Woodburne, eds. Geology and paleontology of Seymour Island, Antarctica Peninsula. Geological Society of America Memoir 169:303–320.Google Scholar
Sato, S. 1994. Analysis of the relationship between growth and sexual maturation in Phacosoma japonicum (Bivalvia: Veneridae). Marine Biology 118:663672.Google Scholar
Sato, S Spawing periodicity and shell microgrowth patterns of the venerid bivalve Phacosoma japonicum (Reeve, 1850). Veliger 38:61–72.Google Scholar
Sato, S 1999. Temporal change of life-history traits in fossil bivalves: an example of Phacosoma japonicum from the Pleistocene of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 154:313323.Google Scholar
Sato-Okoshi, W., and Okoshi, K.. 2007. Characteristics of shell microstructure and growth analysis of the Antarctic bivalve Laternula elliptica from Lützow-Holm Bay, Antarctica. Polar Biology 31:131138.Google Scholar
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., and Roy, K.. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics 40:245269.Google Scholar
Schöne, B. R., and Gillikin, D. P.. 2013. Unraveling environmental histories from skeletal diaries—advances in sclerochronology. Palaeogeography, Palaeoclimatology, Palaeoecology 373:15.Google Scholar
Schöne, B. R., Dunca, E., Fiebig, J., and Pfeiffer, M.. 2005a. Mutvei’s solution: an ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 228:149166.Google Scholar
Schöne, B. R., Houk, S. D., Freyre Castro, A. D., Fiebig, J., Oschmann, W., Kroncke, I., Dreyer, W., and Gosselck, F.. 2005b. Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived bivalve mollusk. Palaios 20:7892.CrossRefGoogle Scholar
Schöne, B. R., Zhang, Z., Radermacher, P., Thébault, J., Jacob, D. E., Nunn, E. V., and Maurer, A.-F.. 2011. Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 302:5264.Google Scholar
Sejr, M. K., Jensen, K. T., and Rysgaard, S.. 2002aAnnual growth bands in the bivalve Hiatella arctica validated by a mark-recapture study in NE Greenland. Polar Biology 25:794796.Google Scholar
Sejr, M. K., Sand, M. K., Jensen, K. T., Peterson, J. K., Christensen, P. B., and Rysgaard, S.. 2002b. Growth and production of Hiatella arctica (Bivalvia) in a high-Arctic fjord (Young Sound, Northeast Greenland). Marine Ecology Progress Series 244:163169.Google Scholar
Smith, W., Marra, J., Hiscock, M., and Barber, R.. 2000. The seasonal cycle of phytoplankton bimoass and primary producitivty in the Ross Sea, Antarctica. Deep-Sea Research, part II (Topical Studies in Oceanography) 47:31193140.Google Scholar
Speakman, J R.. 2005. Body size, energy metabolism and lifespan. Journal of Experimental Biology 208:17171730.CrossRefGoogle ScholarPubMed
Stilwell, J. D., and Zinsmeister, W. J. eds 1992. Molluscan systematics and biostratigraphy: Lower Tertiary La Meseta Formation, Seymour Island, Antarctic Peninsula. Wiley, Hoboken, N.J.Google Scholar
Thomas, J. A., Welch, J. J., Lanfear, R., and Bromham, L.. 2010. A generation time effect on the rate of molecular evolution in invertebrates. Molecular Biology and Evolution 27:11731180.Google Scholar
Thompson, I., Jones, D. S., and Dreibelbis, D.. 1980. Annual internal growth banding and life history of the ocean quahog Arctica islandica (Mollusca: Bivalvia). Marine Biology 57:2534.Google Scholar
Tobin, T. S., and Ward, P. D.. 2015. Carbon isotope (δ13C) differences between Late Cretaceous ammonites and benthic mollusks from Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 428:5057.Google Scholar
Tobin, T. S., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., Diamond, M. R., Raub, T. D., and Kirschvink, J. L.. 2012. Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: links with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology 350–352:180188.Google Scholar
Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B., and Gaina, C.. 2008. Global plate motion frames: toward a unified model. Reviews of Geophysics 46(3).Google Scholar
Van Voorhies, W. 2001. Metabolism and lifespan. Experimental Gerontology 36:5564.Google Scholar
Verdone-Smith, C., and Enesco, H. E.. 1982. The effect of temperature and of dietary restriction on lifespan and reproduction in the rotifer Asplanchia brightwelli . Experimental Gerontology 17:252262.Google Scholar
Vermeij, G., Dudley, E., and Zipser, E.. 1989. Successful and unsuccessful drilling predation in recent pelecypods. Veliger 32:266273.Google Scholar
Visaggi, C. C., and Kelley, P. H.. 2015. Equatorward increase in naticid gastropod drilling predation on infaunal bivalves from Brazil with paleontological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 438:285299.Google Scholar
Vladimirova, I., Kleimenova, S., and Radzinskaya, L.. 2003. The relation of energy metabolism and body weight in bivalves (Mollusca:Bivalvia). Biology Bulletin 30:392399.Google Scholar
von Bertalanffy, L. 1938. A quanitative theory of organic growth (inquiries on growth laws II). Human Biology 10:181213.Google Scholar
Wanamaker, A. D., Heinemeier, J., Scourse, J., Richardson, C., Butler, P. G., Eiriksson, J., and Knudsen, K. L.. 2008. Very long-lived mollusks confirm 17th century AD tephra based radiocarbon reservoir ages for north Icelandic shelf waters. Radiocarbon 50:399412.Google Scholar
Williams, D. F., Arthur, M. A., Jones, D. S., and Williams, N. H.. 1982. Seasonality and mean annual sea surface temperatures from isotopic and sclerochronological records. Nature 296:432434.Google Scholar
Witbaard, R., Jenness, M. I., van der Borg, K., and Ganssen, G.. 1994. Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Netherlands Journal of Sea Research 33:91101.Google Scholar
Witts, J. D., Bowman, V. C., Wignall, P. B., Alistair Crame, J., Francis, J. E., and Newton, R. J.. 2015. Evolution and extinction of Maastrichtian (Late Cretaceous) cephalopods from the López de Bertodano Formation, Seymour Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 418:193212.Google Scholar
Witts, J. D., Whittle, R. J., Wignall, P. B., Crame, J. A., Francis, J. E., Newton, R. J., and Bowman, V. C.. 2016. Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica. Nature Communications 7:11738.Google Scholar
Woodhead, A. D. 1985. Feral fishes. Interdisciplinary Topics in Gerontology 21:2250.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686692.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279283.Google Scholar
Zinsmeister, W. J. 1982. Review of the Upper Cretaceous–Lower Tertiary sequence on Seymour Island, Antarctica. Journal of the Geological Society 139:779785.Google Scholar
Zinsmeister, W. J 1984. Late Eocene Bivalves (Mollusca) from the La Meseta Formation, collected during the 1974–1975 Joint Argentine–American Expedition to Seymour Island, Antarctic Peninsula. Journal of Paleontology 58:14971527.Google Scholar
Zinsmeister, W. J., and Macellari, C. E.. 1988. Bivalvia (Mollusca) from Seymour Island, Antarctic Peninsula. In R. M. Feldmann, and M. O. Woodburne, eds. Geology and paleontology of Seymour Island, Antarctica Peninsula. Geological Society of America Memoir:169253169284.Google Scholar
Zinsmeister, W. J., Feldmann, R. M., Woodburne, M. O., and Elliot, D. H.. 1989. Latest Cretaceous/Earliest Tertiary transition on Seymour Island, Antarctica. Journal of Paleontology 63:731738.Google Scholar