Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:12:56.716Z Has data issue: false hasContentIssue false

Fidelity of variation in species composition and diversity partitioning by death assemblages: time-averaging transfers diversity from beta to alpha levels

Published online by Cambridge University Press:  08 April 2016

Adam Tomašových
Affiliation:
Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637 Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia. E-mail: tomasovych@uchicago.edu
Susan M. Kidwell
Affiliation:
University of Chicago, Department of Geophysical Sciences, Chicago, Illinois 60637. E-mail: skidwell@uchicago.edu

Abstract

Despite extensive paleoecological analyses of spatial and temporal turnover in species composition, the fidelity with which time-averaged death assemblages capture variation in species composition and diversity partitioning of living communities remains unexplored. Do death assemblages vary in composition between sites to a lesser degree than do living assemblages, as would be predicted from time-averaging? And is the higher number of species observed in death relative to living assemblages reduced with increasing spatial scale? We quantify the preservation of spatial and temporal variation in species composition using 11 regional data sets based on samples of living molluscan communities and their co-occurring time-averaged death assemblages. (1) Compositional dissimilarities among living assemblages (LA) within data sets are significantly positively rank-correlated to dissimilarities among counterpart pairs of death assemblages (DA), demonstrating that pairwise dissimilarity within a study area has a good preservation potential in the fossil record. Dissimilarity indices that downplay the abundance of dominant species return the highest live-dead agreement of variation in species composition. (2) The average variation in species composition (average dissimilarity) is consistently smaller in DAs than in LAs (9 of 11 data sets). This damping of variation might arise from DAs generally having a larger sample size, but the reduction by ∼10–20% mostly persists even in size-standardized analyses (4 to 7 of 11 data sets, depending on metric). Beta diversity expressed by the number of compositionally distinct communities is also significantly reduced in death assemblages in size-standardized analyses (by ∼25%). This damping of variation and reduction in beta diversity is in accord with the loss of temporal resolution expected from time-averaging, without invoking taphonomic bias (from differential preservation or postmortem transportation) or sample-size effects. The loss of temporal resolution should directly reduce temporal variation, and assuming time-for-space substitution owing to random walk within one habitat and/or temporal habitat shifting, it also decreases spatial variation in species composition. (3) DAs are more diverse than LAs at the alpha scale, but the difference is reduced at gamma scales because partitioning of alpha and beta components differs significantly between LAs and DAs. This indicates that the effects of time-averaging are reduced with increasing spatial scale. Thus, overall, time-averaged molluscan DAs do capture variation among samples of the living assemblage, but they tend to damp the magnitude of variation, making them a conservative means of inferring change over time or variation among regions in species composition and diversity. Rates of temporal and spatial species turnover documented in the fossil record are thus expected to be depressed relative to the turnover rates that are predicted by models of community dynamics, which assume higher temporal resolution. Finally, the capture by DAs of underlying variation in the LA implies little variation in the net preservation potential of death assemblages across environments, despite the different taphonomic pathways suggested by taphofacies studies.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adler, P. B., and Lauenroth, W. K. 2003. The power of time: spatiotemporal scaling of species diversity. Ecology Letters 6:749756.Google Scholar
Adler, P. B., White, P. E., Lauenroth, W. K., Kaufman, D. M., Rassweiler, A., and Rusak, J. A. 2005. Evidence for a general species-time-area relationship. Ecology 86:20322039.CrossRefGoogle Scholar
Alin, J. A., and Cohen, A. S. 2004. The live, the dead and the very dead: taphonomic calibration of the recent record of paleoecological change in Lake Tanganyika, East Africa. Paleobiology 30:82107.Google Scholar
Anderson, M. J. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245253.CrossRefGoogle ScholarPubMed
Anderson, M. J., Ellingsen, K. E., and McArdle, B. H. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683693.CrossRefGoogle ScholarPubMed
Arita, H. T., and Rodríguez, P. 2002. Geographic range, turnover rate and the scaling of species diversity. Ecography 25:541550.Google Scholar
Aronson, R. B., Macintyre, I. G., Wapnick, C. M., and O'Neill, M. W. 2004. Phase shifts, alternative states, and the unprecedented convergence of two reef systems. Ecology 85:18761891.Google Scholar
Aronson, R. B., Macintyre, I. G., Lewis, S. A., and Hilbun, N. L. 2005. Emergent zonation and geographic convergence of coral reefs. Ecology 86:25862600.Google Scholar
Aslan, A., and Behrensmeyer, A. K. 1996. Taphonomy and time resolution of bone assemblages in a contemporary fluvial system: the East Fork River, Wyoming. Palaios 11:411421.Google Scholar
Wood, S. L. Barbour, Krause, R. A. Jr., Kowalewski, M., Wehmiller, J., and Simões, M. G. 2006. Aspartic acid racemization dating of Holocene brachiopods and bivalves from the southern Brazilian shelf, South Atlantic. Quaternary Research 66:323331.CrossRefGoogle Scholar
Behrensmeyer, A. K. 1982. Time resolution in fluvial vertebrate assemblages. Paleobiology 8:211227.CrossRefGoogle Scholar
Behrensmeyer, A. K., and Chapman, R. E. 1993. Models and simulations of taphonomic time-averaging in terrestrial vertebrate assemblages. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:125149. Paleontological Society, Knoxville, Tenn. Google Scholar
Behrensmeyer, A. K., Western, D., and Boaz, D. E. Dechant 1979. New perspectives in vertebrate paleoecology from a Recent bone assemblage. Paleobiology 5:1221.Google Scholar
Behrensmeyer, A. K., Stayton, C. T., and Chapman, R. E. 2003. Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology 29:5270.2.0.CO;2>CrossRefGoogle Scholar
Bennington, J. B. 2003. Transcending patchiness in the comparative analysis of paleocommunities: a test case from the Upper Cretaceous of New Jersey. Palaios 18:2233.Google Scholar
Best, M. M. R., and Kidwell, S. M. 2000. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology 26:80102.2.0.CO;2>CrossRefGoogle Scholar
Bonelli, J. R., Brett, C. E., Miller, A. I., Bennington, J. B. 2006. Testing for faunal stability across a regional biotic transition: quantifying stasis and variation among recurring coral-rich biofacies in the Middle Devonian Appalachian Basin. Paleobiology 32:2037.Google Scholar
Bosence, D. W. J. 1979. Live and dead faunas from coralline algal gravels, Co. Galway. Palaeontology 22:449478.Google Scholar
Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios 10:597616.CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C. 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1:207227.Google Scholar
Brett, C. E., Ivany, L. C., and Schopf, K. M. 1996. Coordinated stasis: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 127:120.CrossRefGoogle Scholar
Bulinski, K. V. 2007. Analysis of sample-level properties along a paleoenvironmental gradient: the behavior of evenness as a function of sample size. Palaeogeography, Palaeoclimatology, Palaeoecology 253:490508.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.Google Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.Google Scholar
Butler, V. L. 1993. Natural versus cultural salmonid remains: origin of the Dalles Roadcut bones, Columbia River, Oregon, USA. Journal of Archaeological Science 20:124.CrossRefGoogle Scholar
Carroll, M., Kowalewski, M., Simões, M. G., and Goodfriend, G. A. 2003. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology 29:381402.Google Scholar
Carey, S., Ostling, A., Harte, J., and del Moral, R. 2007. Impact of curve construction and community dynamics on the species-time relationship. Ecology 88:21452153.Google Scholar
Chao, A., Chazdon, R. L., Colwell, R. K., and Shen, T.-J. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8:148159.Google Scholar
Chase, J. M., Amarasekare, P., Cottenie, K., Gonzalez, A., Holt, R. D., Holyoak, M., Hoopes, M. F., Leibold, M. A., Loreau, M., Mouquet, N., Shurin, J. B., and Tilman, D. 2005. Competing theories for competitive metacommunities. Pp. 335354 in Holyoak, M. et al. 2005.Google Scholar
Chave, J., and Leigh, E. G. Jr. 2002. A spatially explicit neutral model of β-diversity in tropical forests. Theoretical Population Biology 62:153168.Google Scholar
Chave, J., Muller-Landau, H. C., and Levin, S. A. 2002. Comparing classic community models: theoretical consequences for patterns of diversity. American Naturalist 159:123.Google Scholar
Chesson, P. L. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31:343366.CrossRefGoogle Scholar
Cintra-Buenrostro, C. E., Foster, M. S., and Meldahl, K. H. 2002. Response of nearshore marine assemblages to global change: a comparison of molluscan assemblages in Pleistocene and modern rodolith beds in the southwestern Gulf of California, México. Palaeogeography, Palaeoclimatology, Palaeoecology 183:299320.Google Scholar
Condit, R., Pitman, N., Leigh, E. G. Jr., Chave, J., Terborgh, J., Foster, R. B., Núñez, P., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., and Hubbell, S. P. 2002. Beta-diversity in tropical forest trees. Science 295:666669.Google Scholar
Crist, T. O., Veech, J. A., Gering, J. C., and Summerville, K. S. 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β and γ diversity. American Naturalist 162:734743.CrossRefGoogle ScholarPubMed
Cummins, H., Powell, E. N., Newton, H. J., Stanton, R. J. Jr., and Staff, G. 1986. Assessing transportation by the covariance of species with comments on contagious and random distributions. Lethaia 19:122.Google Scholar
Cummins, R. H. 1994. Taphonomic processes in modern freshwater molluscan death assemblages: Implications for the freshwater fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 108:5573 Google Scholar
Dornelas, M., Connolly, S. R., and Hughes, T. P. 2006. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440:8082.CrossRefGoogle ScholarPubMed
Edinger, E. N., Pandolfi, J. M., and Kelley, R. A. 2001. Community structure of Quaternary coral reefs compared with Recent life and death assemblages. Paleobiology 27:669694.2.0.CO;2>CrossRefGoogle Scholar
Ellingsen, K. E., and Gray, J. S. 2002. Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf? Journal of Animal Ecology 71:373389.Google Scholar
Ferrier, S., Manion, G., Elith, J., and Richardson, K. 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13:252264.Google Scholar
Finnegan, S., and Droser, M. L. 2005. Relative and absolute abundance of trilobites and rhynchonelliform brachiopods across the Lower/Middle Ordovician boundary, eastern Basin and Range. Paleobiology 31:480502.Google Scholar
Finnegan, S., and Droser, M. L. 2008. Reworking diversity: effects of storm deposition on evenness and sampled richness, Ordovician of the Basin and Range, Utah and Nevada, USA. Palaios 23:8796.Google Scholar
Flessa, K. W., and Kowalewski, M. 1994. Shell survival and time-averaging in nearshore and shelf environments: estimates from the radiocarbon literature. Lethaia 27:153165.CrossRefGoogle Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.CrossRefGoogle Scholar
Fürsich, F. T., and Aberhan, M. 1990. Significance of time-averaging for paleocommunity analysis. Lethaia 23:143152.CrossRefGoogle Scholar
Fürsich, F. T., and Flessa, K. W. 1987. Taphonomy of tidal flat molluscs in the Northern Gulf of California: paleoenvironmental analysis despite the perils of preservation. Palaios 2:543559.Google Scholar
Gardiner, L. 2001. Stability of Late Pleistocene reef mollusks from San Salvador Islands, Bahamas. Palaios 16:372386.Google Scholar
Gaston, K. J., and McArdle, B. H. 1994. The temporal variability of animal abundances: measures, methods and patterns. Philosophical Transactions of the Royal Society of London B 345:335358.Google Scholar
Gavin, D. G., Brubaker, L. B., McLachlan, J. S., and Oswald, W. W. 2005. Correspondence of pollen assemblages with forest zones across steep environmental gradients, Olympic Peninsula, Washington, USA. Holocene 15:648662.Google Scholar
Harries, P. J. 2003. High resolution approaches in stratigraphic paleontology. Plenum/Kluwer Academic, New York.Google Scholar
Harrison, S., Davies, K. F., Safford, H. D., and Viers, J. H. 2006. Beta diversity and the scale-dependence of the productivity-diversity relationship: a test in the Californian serpentine flora. Journal of Ecology 94:110117.Google Scholar
Harte, J., and Kinzig, A. 1997. On the implications of species-area relationships for endemism, spatial turnover and food web patterns. Oikos 80:417427.Google Scholar
Harte, J., McCarthy, S., Taylor, K., and Fischer, M. L. 1999. Estimating species-area relationships from plot to landscape scale using species spatial-turnover data. Oikos 86:4554.CrossRefGoogle Scholar
Hassan, G. S., Espinosa, M. A., and Isla, F. I. 2008. Fidelity of dead diatom assemblages in estuarine sediments: how much environmental information is preserved? Palaios 23:112120.Google Scholar
He, F., and Legendre, P. 2002. Species diversity patterns derived from species-area models. Ecology 83:11851198.Google Scholar
Hedges, L. V., and Vevea, J. L. 1998. Fixed- and random-effects models in meta-analysis. Psychological Methods 3:486504.Google Scholar
Hill, M. O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54:427432.Google Scholar
Holland, S. M. 1996. Recognizing artifactually generated coordinated stasis: implications of numerical models and strategies for field tests. Palaeogeography, Palaeoclimatology, Palaeoecology 127:147156.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 1999. Models for simulating the fossil record. Geology 27:491494.Google Scholar
Holyoak, M., Leibold, M. A., and Holt, R. D., eds. 2005. Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago.Google Scholar
Hubbell, S. P. 1997. A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs 16:S9S21.Google Scholar
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Monographs in Population Biology No. 32, Princeton University Press, Princeton, N.J. Google Scholar
Jackson, S. T., and Lyford, M. E. 1999. Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Botanical Review 65:3975.Google Scholar
Jackson, S. T., and Whitehead, D. R. 1991. Holocene vegetation patterns in the Adirondack Mountains. Ecology 72:641653.CrossRefGoogle Scholar
Johnson, K. G., Todd, J. A., and Jackson, J. B. C. 2007. Coral reef development drives molluscan diversity increase at local and regional scales in the late Neogene and Quaternary of the southwestern Caribbean. Paleobiology 33:2452.Google Scholar
Johnson, R. G. 1972. Conceptual models of benthic marine communities. Pp. 148159 in Schopf, T. J. M., ed. Models in paleobiology. Freeman, Cooper, San Francisco. Google Scholar
Jost, L. 2006. Entropy and diversity. Oikos 113:363375.Google Scholar
Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:24272439.Google Scholar
Kidwell, S. M. 1991. The stratigraphy of shell concentrations. In Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology 9:211290. Plenum, New York.Google Scholar
Kidwell, S. M. 1997. Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30:977995.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundances. Geology 30:803806.Google Scholar
Kidwell, S. M. 2005. Brachiopod versus bivalve radiocarbon ages: implications for Phanerozoic trends in time-averaging and productivity. Geological Society of America Abstracts with Programs 37:117.Google Scholar
Kidwell, S. M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences USA 104:1770117706.CrossRefGoogle ScholarPubMed
Kidwell, S. M. 2008. Ecological fidelity of open marine molluscan death assemblages: effects of post-mortem transportation, shelf health, and taphonomic inertia. Lethaia 41:199217.CrossRefGoogle Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. In Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology 9:115209. Plenum, New York.Google Scholar
Kidwell, S. M., and Brenchley, P. J. 1994. Patterns in bioclastic accumulation through the Phanerozoic: changes in input or destruction? Geology 22:11391143.2.3.CO;2>CrossRefGoogle Scholar
Koleff, P., Gaston, K. J., and Lennon, J. J. 2003. Measuring beta diversity for presence-absence data. Journal of Animal Ecology 72:367382.Google Scholar
Kowalewski, M. 1996. Time-averaging, overcompleteness and the geological record. Journal of Geology 104:317326.Google Scholar
Kowalewski, M., and Bambach, R. K. 2003. The limits of paleontological resolution. Pp. 148 in Harries, 2003.Google Scholar
Kowalewski, M., Flessa, K. W., and Aggen, J. A. 1994. Taphofacies analysis of Recent shelly cheniers (beach ridges), Northeastern Baja California, Mexico. Facies 31:209242.Google Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Kowalewski, M., Gürs, K., Nebelsick, J. H., Oschmann, W., Piller, W. E., and Hoffmeister, A. P. 2002. Multivariate hierarchical analyses of Miocene mollusk assemblages of Europe: paleogeographic, paleoecological, and biostratigraphic implications. Geological Society of America Bulletin 114:239256.2.0.CO;2>CrossRefGoogle Scholar
Kowalewski, M., Carroll, M., Casazza, L., Gupta, N., Hannisdal, B., Hendy, A., Krause, R. A. Jr., LaBarbera, M., Lazo, D. G., Messina, C., Puchalski, S., Rothfus, T. A., Sälgeback, J., Stempien, J., Terry, R. C., and Tomašových, A. 2003. Quantitative fidelity of brachiopod-mollusk assemblages from modern subtidal environments of San Juan Islands, USA. Journal of Taphonomy 1:4365.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Wood, S. L. Barbour, and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.Google Scholar
Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:513.Google Scholar
Legendre, P., and Gallagher, E. G. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271280.CrossRefGoogle ScholarPubMed
Legendre, P., and Legendre, L. 1998. Numerical ecology, 2d English ed. Elsevier, Amsterdam.Google Scholar
Legendre, P., Borcard, D., and Peres-Neto, P. R. 2005. Analyzing beta diversity: partitioning the spatial variation of species composition data. Ecological Monographs 75:435440.Google Scholar
Leitner, A. A., and Rosenzweig, M. L. 1997. Nested species-area curves and stochastic sampling: a new theory. Oikos 79:503512.Google Scholar
Lennon, J. J., Koleff, P., Greenwood, J. J. D., and Gaston, K. J. 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology 70:966979.CrossRefGoogle Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:19431967.Google Scholar
Linse, K. 1997. Die Verbreitung epibenthischer Mollusken im chilenischen Beagle-Kanal. [Distribution of epibenthic Mollusca from the Chilean Beagle Channel]. Berichte zur Polarforschung 228:1131.Google Scholar
Linse, K. 1999. Abundance and diversity of Mollusca in the Beagle Channel. Scientia Marina 63(Suppl. 1):391397.Google Scholar
Loreau, M. 2000. Are communities saturated? On the relationship between α, β and γ diversity. Ecology Letters 3:7376.Google Scholar
MacArthur, R. H. 1965. Patterns of species diversity. Biological Reviews 40:510533.CrossRefGoogle Scholar
Martin, R. E., Wehmiller, J. F., Harris, M. S., and Liddell, W. D. 1996. Comparative taphonomy of bivalves and foraminifera from Holocene tidal flat sediments, Bahía la Choya, Sonora, Mexico (northern Gulf of California): taphonomic grades and temporal resolution. Paleobiology 22:8090.Google Scholar
Martin, R. E., Hippensteel, S. P., Nikitina, D., and Pizzuto, J. E. 2002. Artificial time-averaging of marsh foraminiferal assemblages: linking the temporal scales of ecology and paleoecology. Paleobiology 28:263277.Google Scholar
McArdle, B. H., Gaston, K. J., and Lawton, J. H. 1990. Variation in the size of animal populations: patterns, problems and artifacts. Journal of Animal Ecology 59:439454.Google Scholar
McGill, B. J., Hadly, E. A., and Maurer, B. A. 2005. Community inertia of Quaternary small mammal assemblages in North America. Proceedings of the National Academy of Sciences USA 102:1670116706.Google Scholar
McKinney, M. L., and Drake, J. A. 1998. Biodiversity dynamics. Columbia University Press, New York.Google Scholar
McKinney, M. L., and Frederick, D. L. 1999. Species-time curves and population extremes: ecological patterns in the fossil record. Evolutionary Ecology Research 1:641650.Google Scholar
Meldahl, K. H., and Flessa, K. W. 1990. Taphonomic pathways and comparative biofacies and taphofacies in a Recent intertidal/shallow shelf environment. Lethaia 23:4360.Google Scholar
Miller, A. I. 1988. Spatial resolution in subfossil molluscan remains: implications for paleobiological analyses. Paleobiology 14:91103.Google Scholar
Miller, A. I., and Cummins, H. 1990. A numerical model for the formation of fossil assemblages: estimating the amount of post-mortem transport along environmental gradients. Palaios 5:303316.Google Scholar
Miller, J. H. 2007. The living and dead ungulates of Yellowstone National Park: testing recent surficial bone assemblages as a source of high-quality historical insight. Abstracts, Ecological Society of America/Society for Ecological Restoration Joint Meeting, San Jose.Google Scholar
Miller, W. 1986. Paleoecology of benthic community replacement. Lethaia 19:225231.Google Scholar
Munoz, F., Couteron, P., and Ramesh, B. R. 2008. Beta diversity in spatially implicit neutral models: a new way to assess species migration. American Naturalist 172:116127.Google Scholar
Murray, J. W. 1991. Ecology and palaeoecology of benthic foraminifera. Longman Scientific and Technical, New York.Google Scholar
Murray, J. W., and Bowser, S. S. 2000. Mortality, protoplasm decay rate, and reliability of staining techniques to recognize ‘living’ foraminifera: a review. Journal of Foraminiferal Research 30:6670.Google Scholar
Nekola, J. C., and White, P. S. 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26:867878.Google Scholar
O'Connell, J. M., and Tunnicliffe, V. 2001. The use of sedimentary fish remains for interpretation of long-term fish population fluctuations. Marine Geology 174:177195.Google Scholar
Olszewski, T. D. 1999. Taking advantage of time-averaging. Paleobiology 25:226238.Google Scholar
Olszewski, T. D. 2004. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104:377387.Google Scholar
Olszewski, T. D., and Erwin, D. H. 2004. Dynamic response of Permian brachiopod communities to long-term environmental change. Nature 428:738741.Google Scholar
Olszewski, T. D., and Kidwell, S. M. 2007. The preservational fidelity of evenness in molluscan death assemblages. Paleobiology 33:123.Google Scholar
Olszewski, T. D., and Patzkowsky, M. E. 2001. Measuring recurrence of marine biotic gradients: a case study from the Pennsylvanian-Permian Midcontinent. Palaios 16:444460.2.0.CO;2>CrossRefGoogle Scholar
Palmer, M. W., and White, P. S. 1994. Scale dependence and the species-area relationship. American Naturalist 144:717740.Google Scholar
Pandolfi, J. M., and Greenstein, B. J. 1997. Preservation of community structure in death assemblage of deep water Caribbean reef corals. Limnology and Oceanography 42:15051516.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295309.Google Scholar
Pandolfi, J. M., and Jackson, J. B. C. 2001. Community structure of Pleistocene coral reefs of Curaçao, Netherlands Antilles. Ecological Monographs 71:4967.Google Scholar
Pandolfi, J. M., and Jackson, J. B. C. 2006. Ecological persistence interrupted in Caribbean coral reefs. Ecology Letters 9:818826.Google Scholar
Pandolfi, J. M., and Minchin, P. R. 1996. A comparison of taxonomic composition and diversity between reef coral life and death assemblages in Madang Lagoon, Papua New Guinea. Palaeogeography, Palaeoclimatology, Palaeoecology 119:321341.Google Scholar
Pélissier, R., and Couteron, P. 2007. An operational, additive framework for species diversity partitioning and beta-diversity analysis. Journal of Ecology 95:294300.Google Scholar
Peters, S. E. 2004. Evenness of Cambrian-Ordovician benthic marine communities in North America. Paleobiology 30:325346.Google Scholar
Peterson, C. 1976. Relative abundances of living and dead molluscs in two Californian lagoons. Lethaia 9:137148.Google Scholar
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.Google Scholar
Preston, F. W. 1960. Time and space and the variation of species. Ecology 41:611627.Google Scholar
R Development Core Team. 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org Google Scholar
Reed, D. N. 2007. Serengeti micromammals and their implications for Olduvai paleoenvironments. Pp. 217255 in Bobe, R., Alemseged, Z., and Behrensmeyer, K., eds. Hominin environments in the East African Pliocene: an assessment of the faunal evidence. Vertebrate Paleobiology and Paleoanthropology Series, Vol. 1. Springer, Dordrecht.Google Scholar
Rosenzweig, M. L. 1998. Preston's ergodic conjecture: the accumulation of species in space and time. Pp. 311348 in McKinney, M. L. and Drake, J. A., eds.CrossRefGoogle Scholar
Russell, G. J. 1998. Turnover dynamics across ecological and geological scales. Pp. 377404 in McKinney, M. L. and Drake, J. A., eds.Google Scholar
Russell, G. J., Diamond, J. M., Pimm, S. L., and Reed, T. M. 1995. A century of turnover: community dynamics at three time-scales. Journal of Animal Ecology 64:628641.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.Google Scholar
Shurin, J. B. 2007. How is diversity related to species turnover through time? Oikos 116:957965.Google Scholar
Soininen, J., McDonald, R., and Hillebrand, H. 2007. The distance decay of similarities in ecological communities. Ecography 30:312.Google Scholar
Staff, G. M., and Powell, E. N. 1990. Local variability of taphonomic attributes in a parautochthonous assemblage: can taphonomic signature distinguish a heterogeneous environment? Journal of Paleontology 64:648658.Google Scholar
Staff, G. M., and Powell, E. N. 1999. Onshore-offshore trends in community structural attributes: death assemblages from the shallow continental shelf of Texas. Continental Shelf Research 19:717756.Google Scholar
Staff, G. M., Powell, E. N., Stanton, R. J. Jr., and Cummins, H. 1985. Biomass: is it a useful tool in paleocommunity reconstruction? Lethaia 18:209232.Google Scholar
Staff, G. M., Powell, E. N., Stanton, R. J. Jr., and Cummins, H. 1986. Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: death assemblages in Texas bays. Geological Society of America Bulletin 97:428443.Google Scholar
Stewart, K. M. 1991. Modern fishbone assemblages at Lake Turkana, Kenya: a methodology to aid in recognition of Hominid fish utilization. Journal of Archaeological Science 18:579603.Google Scholar
Sweetman, J. N., and Smol, J. P. 2006. Reconstructing fish populations using Chaoborus (Diptera: Chaoboridae) remains—a review. Quaternary Science Reviews 25:20132023.Google Scholar
Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 189:732735.Google Scholar
Terry, R. C. 2007. Holocene small mammals of the Great Basin: tracking recent richness declines through live/dead analysis of raptor-generated faunal remains. Abstracts, Geological Society of America Annual Meeting, Denver.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625 in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Tomašových, A. 2006. Linking taphonomy to community-level abundance: insights into compositional fidelity of the Upper Triassic shell concentrations (Eastern Alps). Palaeogeography, Palaeoclimatology, Palaeoecology 235:355381.Google Scholar
Tomašových, A., and Kidwell, S. M. 2009. Preservation of spatial and environmental gradients by death assemblages. Paleobiology [this issue].Google Scholar
Tomašových, A., and Siblík, M. 2007. Evaluating compositional turnover of brachiopod communities during the end-Triassic mass extinction (Northern Calcareous Alps): removal of dominant groups, recovery and community re-assembly. Palaeogeography, Palaeoclimatology, Palaeoecology 244:170200.Google Scholar
Tsuchi, R. 1959. Molluscs and shell remains from the coast of Chihama in the Sea of Enshu, the Pacific side of central Japan. Reports of Liberal Arts and Science Faculty, Shizuoka University (Natural Science) 2:143152.Google Scholar
Tuomisto, H., and Ruokolainen, K. 2006. Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87:26972708.Google Scholar
Veech, J. A., Summerville, K. S., Crist, T. O., and Gering, J. C. 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:39.Google Scholar
Vellend, M. 2001. Do commonly used indices of β-diversity measure species turnover? Journal of Vegetation Science 12:545552.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar
Warme, J. E. 1971. Paleoecological aspects of a modern coastal lagoon. University of California Publications in Geological Sciences 87:1110.Google Scholar
Webber, A. J. 2005. The effects of spatial patchiness on the stratigraphic signal of biotic composition (Type Cincinnatian Series; Upper Ordovician). Palaios 20:3750.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:116.Google Scholar
White, E. P., Adler, P. B., Lauenroth, W. K., Gill, R. A., Greenberg, D., Kaufmann, D. M., Rassweiler, A., Rusak, J. A., Smith, M. D., Steinbeck, J. R., Waide, R. B., and Yao, J. 2006. A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos 112:185195.Google Scholar
White, W. A., Calnan, T. R., Morton, R. A., Kimble, R. S., Littleton, T. G., McGowen, J. H., and Nance, H. S. 1983. Submerged lands of Texas, Corpus Christi area: sediments, geochemistry, benthic macroinvertebrates, and associated wetlands. Bureau of Economic Geology, University of Texas, Austin.Google Scholar
Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279338.Google Scholar
Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.Google Scholar
Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385397.Google Scholar
Wilson, M. V., and Shmida, A. 1984. Measuring beta diversity with presence-absence data. Journal of Ecology 72:10551064.Google Scholar
Wolda, H. 1981. Similarity indices, sample size and diversity. Oecologia 50:296302.Google Scholar
Zhao, Y., Sayer, C. D., Birks, H. H., Hughes, M., and Peglar, S. M. 2006. Spatial representation of aquatic vegetation by macrofossils and pollen in a small and shallow lake. Journal of Paleolimnology 35:335350.Google Scholar
Zohar, I., Belmaker, M., Nadel, D., Gafny, S., Goren, M., Hershkovitz, I., and Dayan, T. 2008. The living and the dead: how do taphonomic processes modify relative abundance and skeletal completeness of freshwater fish? Palaeogeography, Palaeoclimatology, Palaeoecology 258:292316.Google Scholar
Zuschin, M., and Oliver, P. G. 2003. Fidelity of molluscan life and death assemblages on sublittoral hard substrata around granitic islands of the Seychelles. Lethaia 36:133149.Google Scholar
Zuschin, M., Hohenegger, J., and Steininger, F. F. 2000. A comparison of living and dead molluscs on coral reef associated hard substrata in the northern Red Sea—implications for the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 159:167190.Google Scholar
Zuschin, M., Harzhauser, M., and Mandic, O. 2007. The stratigraphic and sedimentologic framework of fine-scale faunal replacements in the Middle Miocene of the Vienna Basin (Austria). Palaios 22:285295.Google Scholar
Supplementary material: File

Tomašových and Kidwell supplementary material

Supplementary Material

Download Tomašových and Kidwell supplementary material(File)
File 237.1 KB