Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T08:31:14.405Z Has data issue: false hasContentIssue false

A faster-paced world?: contrasts in biovolume and life-process rates in cyclostome (Class Stenolaemata) and cheilostome (Class Gymnolaemata) bryozoans

Published online by Cambridge University Press:  08 April 2016

Frank K. McKinney*
Affiliation:
Department of Geology, Appalachian State University, Boone, North Carolina 28608

Extract

Zooids of cheilostome bryozoans are on average substantially more robust than are zooids of cyclostome bryozoans. The differences include greater number, length, and cross-sectional area of tentacles, plus a more extensively developed funiculus. Median values for mouth size and cilia-generated feeding current velocity are greater for cheilostomes than for cyclostomes so that cheilostomes have the potential for greater intake of nutrient energy per unit time, which may explain their apparently higher growth rates. For unit area of substrate occupied, the Cheilostomata (Class Gymnolaemata; members of the post-Paleozoic fauna) contain greater biomass and apparently generate greater energy flow than do the Cyclostomata, which are the only extant order of the Class Stenolaemata (characteristic of the Paleozoic fauna).

Type
Research Article
Copyright
The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:10951108.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1991. Increase in energy flow in marine communities over time. Geological Society of America Abstracts with Programs 23(5):458.Google Scholar
Banta, W. C., McKinney, F. K., and Zimmer, R. L. 1974. Bryozoan monticules: excurrent water outlets? Science 185:783784.CrossRefGoogle ScholarPubMed
Barrois, J. 1977. Recherches sur l'embryologie des bryozoaires. Lille, Paris.Google Scholar
Benton, M. J. 1987. Progress and competition in macroevolution. Biological Reviews 62:305338.Google Scholar
Best, M. A., and Thorpe, J. P. 1983. Effects of particle concentration on clearance rate and feeding current velocity in the marine bryozoan Flustrellidra hispida. Marine Biology 77:8592.Google Scholar
Best, M. A. 1986. Effects of food particle concentration on feeding current velocity in six species of marine Bryozoa. Marine Biology 93:255262.Google Scholar
Bishop, J. D. D. 1989. Colony form and the exploitation of spatial refuges by encrusting Bryozoa. Biological Reviews 64:197218.Google Scholar
Boardman, R. S. 1971. Mode of growth and functional morphology of autozooids in some Recent and Paleozoic tubular Bryozoa. Smithsonian Contributions to Paleobiology 8:151.Google Scholar
Boardman, R. S. 1983. General features of the class Stenolaemata. Pp. 49137in Robison, R. A., ed. Treatise on invertebrate paleontology, part G (Bryozoa), revised. The Geological Society of America, Boulder, Colorado, and The University of Kansas, Lawrence.Google Scholar
Boardman, R. S., and Cheetham, A. H. 1969. Skeletal growth, intracolony variation and evolution in Bryozoa: a review. Journal of Paleontology 43:205233.Google Scholar
Boardman, R. S. 1973. Degrees of colony dominance in stenolaemate and gymnolaemate Bryozoa. Pp. 121220in Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr., eds. Animal colonies. Dowden, Hutchinson & Ross, Stroudsburg.Google Scholar
Boardman, R. S., and McKinney, F. K. 1976. Skeletal architecture and preserved organs of four-sided zooids in convergent genera of Paleozoic Trepostomata (Bryozoa). Journal of Paleontology 50:2578.Google Scholar
Boardman, R. S., Cheetham, A. H., and Cook, P. L. 1983. Introduction to the Bryozoa. Pp. 348in Robison, R. A., ed. Treatise on invertebrate paleontology, part G (Bryozoa), revised. The Geological Society of America, Boulder, Colorado, and The University of Kansas, Lawrence.Google Scholar
Boardman, R. S., McKinney, F. K., and Taylor, P. D. 1992. Morphology, anatomy, and systematics of the Cinctiporidae, new family (Bryozoa: Stenolaemata). Smithsonian Contributions to Paleobiology 70:181.CrossRefGoogle Scholar
Bobin, G. 1977. Interzooecial communications and the funicular system. Pp. 307333in Woollacott and Zimmer 1977.Google Scholar
Borg, F. 1926. Studies on recent cyclostomatous Bryozoa. Zoologiska Bidrag från Uppsala 10:181507.Google Scholar
Buss, L. W. 1980. Bryozoan overgrowth interactions—the interdependence of competition for space and food. Nature (London) 281:475477.Google Scholar
Buss, L. W. 1981. Mechanisms of competition between Onychocella alula (Hastings) and Antropora tincta (Hastings) on an eastern Pacific rocky shoreline. Pp. 3949in Larwood and Nielsen 1981.Google Scholar
Buss, L. W., and Jackson, J. B. C. 1979. Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. American Naturalist 113:223234.Google Scholar
Canu, F., and Bassler, R. S. 1929. Bryozoa of the Philippine region. United States National Museum Bulletin 100:1685.Google Scholar
Chatterton, B. D. E., and Speyer, S. E. 1989. Larval ecology, life history strategies, and patterns of extinction and survivorship among Ordovician trilobites. Paleobiology 15:118132.Google Scholar
Cook, P. L. 1985. Bryozoa from Ghana; a preliminary survey. Koninklijk Museum voor Midden-Afrika, Zoologische Wetenschappen Annals 238:1315.Google Scholar
Crisp, D. 1971. Energy flow measurements. Pp. 197279in Holme, N. A. and McIntyre, A. D., eds. Methods for the study of marine benthos. Blackwell, Oxford.Google Scholar
Darwin, C. 1959. On the origin of species by means of natural selection, or the preservation of the favoured races in the struggle for life. John Murray, London.Google Scholar
Dawkins, R., and Krebs, J. R. 1979. Arms races between and within species. Proceedings of the Royal Society, London B 205:489511.Google ScholarPubMed
Day, R. W., and Osman, R. W. 1981. Predation by Patiria miniata (Asteroidea) on bryozoans: prey diversity may depend on the mechanism of succession. Oecologia 51:300309.CrossRefGoogle ScholarPubMed
Dyrynda, P. E. J. 1981. A preliminary study of patterns of polypide generation-degeneration in marine cheilostome Bryozoa. Pp. 7381in Larwood and Nielsen 1981.Google Scholar
Dyrynda, P. E. J., and King, P. E. 1982. Sexual reproduction in Epistomaria bursaria (Bryozoa: Cheilostomata), an endozooidal brooder without polypide recycling. Journal of Zoology, London 198:337352.Google Scholar
Dyrynda, P. E. J. 1983. Gametogenesis in placental and non-placental ovicellate cheilostome Bryozoa. Journal of Zoology, London 200:471492.Google Scholar
Dyrynda, P. E. J., and Ryland, J. S. 1982. Reproductive strategies and life histories in the cheilostome marine bryozoans Chartella papyracea and Bugula flabellata. Marine Biology 71:241256.Google Scholar
Eggleston, D. 1972. Patterns of reproduction in the marine Ectoprocta of the Isle of Man. Journal of Natural History 6:3138.Google Scholar
Gilmour, T. H. J. 1978. Ciliation and function of the food-collecting and waste-rejecting organs of lophophorates. Canadian Journal of Zoology 56:21422155.Google Scholar
Gordon, D. P. 1974. Microarchitecture and function of the lophophore in the bryozoan Cryptosula pallasiana. Marine Biology 27:147163.CrossRefGoogle Scholar
Gordon, D. P. 1977. The aging process in bryozoans. Pp. 335376in Woollacott and Zimmer 1977.Google Scholar
Gordon, D. P., Clark, A. G., and Harper, J. F. 1987. Bryozoa. Pp. 173199in Pandian, T. J. and Vernberg, F. J., eds. Animal energetics. Academic Press, San Diego.Google Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:212.Google Scholar
Gould, S. J. 1989. Wonderful life. W. W. Norton and Co., New York.Google Scholar
Håkansson, E., and Winston, J. E. 1985. Interstitial bryozoans: unexpected life forms in a high energy environment. Pp. 125134in Nielsen and Larwood 1985.Google Scholar
Harmelin, J.-G. 1976. Le sous-ordre des Tubuliporina (Bryozoaires Cyclostomes) en Méditerranée, écologie et systématique. Memoires de l'Institut Oceanographique de Monaco 10:1326.Google Scholar
Harmelin, J.-G. 1977. Bryozoaires des Iles d'Hyères: cryptofaune bryozoologique des valves vides de Pinna nobilis rencontrées dans les herbiers de Posidonies. Travaux scientifique du Parc national Port-Cros 3:143157.Google Scholar
Hayward, P. J., and Ryland, J. S. 1979. British ascophoran bryozoans. Academic Press, London.Google Scholar
Hayward, P. J. 1985. Cyclostome bryozoans. E. J. Brill; Dr. W. Backhuys, London.Google Scholar
Hughes, D. J. 1987. Gametogenesis and embryonic brooding in the cheilostome bryozoan Celleporella hyalina. Journal of Zoology London 212:691711.Google Scholar
Humphries, E. M. 1977. Larval behavior and post-larval development in Parasmittina nitida morphotype B (Bryozoa: Cheilostomata). American Zoologist 17:520.Google Scholar
Hyman, L. H. 1959. The invertebrates, Volume V (Smaller coelomate groups). McGraw-Hill, New York.Google Scholar
Jackson, J. B. C. 1979. Morphological strategies of sessile animals. Pp. 499555in Larwood, G. and Rosen, B. R., eds. Biology and systematics of colonial organisms. Academic Press, London.Google Scholar
Jackson, J. B. C. and McKinney, F. K. 1990. Ecological processes and progressive macroevolution of marine clonal benthos. Pp. 173209in Ross, R. M. and Allmon, W. D., eds. Causes of evolution, a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., and Wertheimer, S. P. 1985. Patterns of reproduction in five common species of Jamaican reef-associated bryozoans. Pp. 161168in Nielsen and Larwood 1985.Google Scholar
Jebram, D. 1980. Influences of the food on the colony forms of Electra pilosa (Bryozoa, Cheilostomata). Zoologische Jahrbücher (Systematik) 108:114.Google Scholar
Kitchell, J. A., Clark, D. L., and Gombos, S. E. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios 1:504511.Google Scholar
Larwood, G.P., and Nielsen, C., eds. 1981. Recent and fossil Bryozoa. Olsen & Olsen, Fredensborg, Denmark.Google Scholar
Lidgard, S. 1981. Water flow, feeding and colony form in an encrusting cheilostome. Pp. 135142in Larwood and Nielsen 1981.Google Scholar
Lidgard, S. 1985. Zooid and colony growth in encrusting cheilostome bryozoans. Palaeontology 28:255291.Google Scholar
Lidgard, S., McKinney, F. K., and Taylor, P. D. 1993. Competition, clade replacement and a history of cyclostome and cheilostome bryozoan diversity. Paleobiology 19:352371.Google Scholar
López Gappa, J. J. 1989. Overgrowth competition in an assemblage of encrusting bryozoans settled on artificial substrata. Marine Ecology Progress Series 51:121130.Google Scholar
Lutaud, G. 1961. Contribution a l'étude du bourgeonnement et de la croissance des colonies chez Membranipora membranacea (Linné), Bryozoaire chilostome. Annales de la Société royale Zoologique de Belgique 91:157300.Google Scholar
Lutaud, G. 1973. L'innervation du lophophore chez le Bryozoaire chilostome Electra pilosa (L.). Zeitschrift für Zellforschung und mikroscopische Anatomie 140:217234.Google Scholar
McEdward, L. R., and Strathmann, R. R. 1987. The body plan of the cyphonautes larva of bryozoans prevents high clearance rates: comparison with the pluteus and a growth model. Biological Bulletin 172:3045.Google Scholar
McKinney, F. K. 1969. Organic structures in a Late Mississippian trepostomatous ectoproct (bryozoan). Journal of Paleontology 43:285288.Google Scholar
McKinney, F. K. 1986a. Evolution of erect marine bryozoan faunas: repeated success of unilaminate species. American Naturalist 128:795809.Google Scholar
McKinney, F. K. 1986b. Historical record of erect bryozoan growth forms. Proceedings of the Royal Society of London B 228:133149.Google Scholar
McKinney, F. K. 1988. Elevation of lophophores by exposed introverts in Bryozoa: a gymnolaemate character recorded in some stenolaemate species. Bulletin of Marine Science 43:317322.Google Scholar
McKinney, F. K. 1990. Feeding and associated colonial morphology in marine bryozoans. Reviews in Aquatic Sciences 2:255280.Google Scholar
McKinney, F. K. 1992. Competitive interactions between related clades: evolutionary implications of overgrowth interactions between encrusting cyclostome and cheilostome bryozoans. Marine Biology 114:645652.Google Scholar
McKinney, F. K., and Boardman, R. S. 1985. Zooidal biometry of Stenolaemata. Pp. 193203in Nielsen and Larwood 1985.Google Scholar
McKinney, F. K. and Jackson, J. B. C. 1989. Bryozoan evolution. Unwin Hyman, Boston.Google Scholar
McKinney, F. K., Listokin, M. R. A., and Phifer, C. D. 1986. Flow and polypide distribution in the cheilostome bryozoan Bugula and their inference in Archimedes. Lethaia 19:8193.CrossRefGoogle Scholar
McKinney, M. L. 1985. Mass extinction patterns of marine invertebrate groups and some implications for a causal phenomenon. Paleobiology 11:227233.Google Scholar
Maiorana, V. C., and Van Valen, L. M. 1991. Energy and community evolution. Pp. 655665in Dudley, E. C., ed. The unity of evolutionary biology. Sioscorides Press, Portland.Google Scholar
Markham, J. B., and Ryland, J. S. 1987. Function of the gizzard in Bryozoa. Journal of Experimental Marine Biology and Ecology 107:2137.Google Scholar
Mawatari, S. 1947. On the attachment of the larvae of Tubulipora pulchra MacGillivary. Zoological Magazine of Japan 57:4950. [In Japanese.]Google Scholar
Mawatari, S. 1948. On the metamorphosis of Tubulipora misakiensis. Zoological Magazine of Japan 58:2728. [In Japanese.]Google Scholar
Muñoz, M. R., and Cancino, J. M. 1989. Consequencias del tamaño colonial en la tasa metabólica de Cauloramphus spiniferum (Bryozoa). Revista Chilena de Historia Natural 62:205216.Google Scholar
Newman, W. A., and Stanley, S. M. 1981. Competition wins out overall: reply to Paine. Paleobiology 7:561569.Google Scholar
Nielsen, C. 1970. On metamorphosis and ancestrula formation in cyclostomatous bryozoans. Ophelia 7:217256.Google Scholar
Nielsen, C. 1981. On morphology and reproduction of ‘Hippodiplosia’ insculpta and Fenestrulina malusii (Bryozoa, Cheilostomata). Ophelia 20:91125.Google Scholar
Nielsen, C. 1987. Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zoologica 68:205262.Google Scholar
Nielsen, C., and Larwood, G. P., eds. 1985. Bryozoa: Ordovician to Recent. Olsen & Olsen, Fredensborg, Denmark.Google Scholar
Nielsen, C., and Pedersen, K. J. 1979. Cystid structure and protrusion of the polypide in Crisia (Bryozoa, Cyclostomata). Acta Zoologia (Stockholm) 60:6588.Google Scholar
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388399.Google Scholar
Okamura, B. 1987. Particle size and flow velocity induce an inferred switch in bryozoan suspension-feeding behavior. Biological Bulletin 173:222229.Google Scholar
Paine, R. T. 1981. The forgotten roles of disturbance and predation. Paleobiology 7:553560.Google Scholar
Palumbi, S. R., and Jackson, J. B. C. 1983. Ageing in modular organisms: ecology of zooid senescence in Steginoporella sp. (Bryozoa: Cheilostomata). Biological Bulletin 164:267278.Google Scholar
Pohowsky, R. A. 1973. A Jurassic cheilostome from England. Pp. 447461in Larwood, G. P., ed. Living and fossil Bryozoa. Academic Press, London.Google Scholar
Raup, D. M. 1991. Extinction. Bad genes or bad luck?W. W. Norton & Co., New York.Google Scholar
Reed, C. G., Ninos, J. M., and Woollacott, R. M. 1988. Bryozoan larvae as mosaics of multifunctional ciliary fields: ultrastructure of the sensory organs of Bugula stoloniferua (Cheilostomata: Cellularioidea). Journal of Morphology 197:127145.Google Scholar
Ryland, J. S. 1970. Bryozoans. Hutchinson University Library, London.Google Scholar
Ryland, J. S. 1975. Parameters of the lophophore in relation to population structure in a bryozoan community. Pp. 363393in Barnes, H., ed. Proceedings of the 9th European marine biology symposium. Aberdeen University Press, Aberdeen.Google Scholar
Ryland, J. S., and Hayward, P. J. 1977. British anascan bryozoans. Academic Press, London.Google Scholar
Ryland, J. S., and Warner, G. F. 1986. Growth and form in modular animals: ideas on the size and arrangement of zooids. Philosophical Transactions of the Royal Society of London B 313:5376.Google Scholar
Schäfer, P. 1991. Brutkammern der Stenolaemata (Bryozoa): Konstruktionsmorphologie und phylogenetische Bedeutung. Courser Forschungsinstitut Senckenberg 136:1263.Google Scholar
Schneider, D. 1959. Der Aufbau der Bugula-Tierstöcke und seine Beeinflussung durch Aussenfaktoren. Biologisches Zentralblatt 78:250283.Google Scholar
Schneider, D. 1963. Normal and phototropic growth reactions in the marine bryozoan Bugula avicularia. Pp. 357371in Dougherty, E. C., ed. The lower Metazoa. Comparative biology and phylogeny. University of California Press, Berkeley.Google Scholar
Sepkoski, J. J. Jr., 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr., 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sherr, E. B., and Sherr, B. F. 1991. Planktonic microbes: tiny cells at the base of the ocean's food webs. Trends in Ecology and Evolution 6:5054.Google Scholar
Silén, L. 1945. The main features of the development of the ovum embryo and ooecium in the ooeciferous Bryozoa Gymnolaemata. Arkiv för Zoologi A 35:134.Google Scholar
Silén, L. 1977. Polymorphism. Pp. 184231in Woollacott and Zimmer 1977.Google Scholar
Sloss, L. L. 1958. Paleontologic and lithologic associations. Journal of Paleontology 32:715729.Google Scholar
Stanley, S. M., and Newman, W. A. 1980. Competitive exclusion in evolutionary time: the case of the acorn barnacles. Paleobiology 6:173183.Google Scholar
Strathmann, R. R. 1973. Function of lateral cilia in suspension feeding of lophophorates (Brachiopoda, Phoronida, Ectoprocta). Marine Biology 23:129136.CrossRefGoogle Scholar
Strathmann, R. R. 1982. Cinefilms of particle capture by an induced local change of beat of lateral cilia of a bryozoan. Journal of Experimental Marine Biology and Ecology 62:225236.Google Scholar
Ström, R., 1977. Brooding patterns of bryozoans. Pp. 2355in Woollacott and Zimmer 1977.Google Scholar
Taylor, P. D. 1985. Polymorphism in meliceritid cyclostomes. Pp. 311318in Nielsen and Larwood 1985.Google Scholar
Taylor, P. D. 1988. Major radiation of cheilostome bryozoans: triggered by the evolution of a new larval type? Historical Biology 1:4564.Google Scholar
Taylor, P. D., and Larwood, G. P. 1988. Mass extinctions and the pattern of bryozoan evolution. Pp. 99119in Larwood, G. P., ed. Extinction and survival in the fossil record. Clarendon, Oxford.Google Scholar
Taylor, P. D. 1990. Major evolutionary radiations in the Bryozoa. Pp. 209233in Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Clarendon, Oxford.Google Scholar
Thayer, C. W. 1992. Escalating energy budgets and oligotrophic refugia: winners and drop-outs in the Red Queen's race. Paleontological Society Special Publication 6:290.Google Scholar
Utgaard, J. 1973. Mode of colony growth, autozooids, and polymorphism in the bryozoan order Cystoporata. Pp. 317360in Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr., eds. Animal colonies. Dowden, Hutchinson & Ross, Stroudsburg.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar
Van Valen, L. 1976. Energy and evolution. Evolutionary Theory 1:179229.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and escalation. Princeton University Press, Princeton.Google Scholar
Walters, L. J., and Wethey, D. S. 1986. Surface topography influences competitive hierarchies on marine hard substrata: a field experiment. Biological Bulletin 170:441449.Google Scholar
Winston, J. E. 1977. Feeding in marine bryozoans. Pp. 233271in Woollacott and Zimmer 1977.Google Scholar
Winston, J. E. 1978. Polypide morphology and feeding behavior in marine ectoprocts. Bulletin of Marine Science 28:131.Google Scholar
Winston, J. E. 1979. Current-related morphology and behavior in some Pacific coast bryozoans. Pp. 247268in Larwood, G. P. and Abbott, M. B., eds. Advances in bryozoology. Academic Press, London.Google Scholar
Winston, J. E., and Jackson, J. B. C. 1984. Ecology of cryptic coral reef communities. IV. Community development and life histories of encrusting cheilostome Bryozoa. Journal of Experimental Marine Biology and Ecology 76:121.Google Scholar
Wisely, B. 1958. The settling and some experimental reactions of a bryozoan larva, Watersipora cucullata (Busk). Australian Journal of Marine and Freshwater Research 9:362371.Google Scholar
Wolfe, J. A. 1987. Late Cretaceous-Cenozoic history of deciduousness and the terminal Cretaceous event. Paleobiology 13:215226.Google Scholar
Woollacott, R. M., and Zimmer, R. L. 1971. Attachment and metamorphosis of the cheilo-ctenostome bryozoan Bugula neritina (Linne). Journal of Morphology 134:351382.Google Scholar
Woollacott, R. M., eds. 1977. Biology of bryozoans. Academic Press, New York.Google Scholar