Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T21:14:54.539Z Has data issue: false hasContentIssue false

Ecological causation of heterochrony: a test and implications for evolutionary theory

Published online by Cambridge University Press:  08 April 2016

Michael L. McKinney*
Affiliation:
Department of Geological Sciences, University of Tennessee, Knoxville, Tennessee 37996-1410

Abstract

Biometric analyses of the ontogenies of 31 species of fossil echinoids support a hypothesized relationship between regulatory gene changes and environmental stability. In 15 of 17 pairs of related species, the larger species, undergoing slower (neotenic) and/or prolonged (hypermorphic) growth, apparently inhabited the stabler environment. If true, this relationship connects biological processes at a number of levels and explains or agrees with some important macroevolutionary observations, such as onshore evolutionary innovation and Cope's Rule.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. 1985. Problems with the interpretation of developmental sequences. Syst. Zool. 34:4658.Google Scholar
Alberch, P. and Gale, E. 1985. A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution. 39:823.CrossRefGoogle ScholarPubMed
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology. 5:296317.Google Scholar
Ambros, V. and Horvitz, H. R. 1984. Heterochronic mutants of the nematode Caenorhabditis elegans. Science. 226:409416.Google Scholar
Baum, G. R. 1980. Petrography and depositional environments of the Middle Eocene Castle Hayne Limestone, North Carolina. Southeast. Geol. 21:175196.Google Scholar
Biju-Duval, A., Mascle, A., Montadert, L., and Wanneson, J. 1978. Seismic investigations in the Colombia, Venezuela, and Grenada basins, and on the Barbados Ridge for future IPOD drillings. Geol. Mijnbouw. 52:105116.Google Scholar
Bretsky, P. W. and Lorenz, D. M. 1970. Adaptive response to environmental stability. Pp. 522550. In: Yochelson, E. L., ed. Proc. N. Am. Paleontol. Conv. I. Allen Press; Lawrence, Kans.Google Scholar
Bronnimann, P. and Rigassi, D. 1963. Contribution to the geology and paleontology of the area of the city of La Habana, Cuba, and its surroundings. Ecologae Geologicae and Helvetiae. 56:193480.Google Scholar
Calder, W. A. 1984. Size, Function, and Life History. Harvard Univ. Press; Cambridge, Mass. 431 pp.Google Scholar
Cheetham, A. H. 1963. Late Eocene zoogeography of the eastern Gulf Coast region. GSA Mem. 91. 113 pp.Google Scholar
Cooke, C. W. 1959. Cenzoic echinoids of the eastern United States. U.S.G.S. Prof. Paper 321. 106 pp.Google Scholar
Dockery, D. T. 1977. Mollusca of the Moodys Branch Formation, Mississippi. Miss. Geol. Surv. Bull. 120. 212 pp.Google Scholar
Dockery, D. T. 1980. The invertebrate macropaleontology of the Clarke County, Mississippi area. Miss. Geol. Surv. Bull. 122. 387 pp.Google Scholar
DuBar, J. R. 1958. Stratigraphy and paleontology of the late Neogene strata of the Caloosahatchee River area of southern Florida. Fla. Geol. Surv. Bull. 40. 267 pp.Google Scholar
DuBar, J. R. 1974. Summary of the Neogene stratigraphy of southern Florida. Pp. 206231. In: Oakes, R. and DuBar, J. R., eds. Post-Miocene Stratigraphy, Central and Southern Atlantic Coastal Plain. Utah State Univ. Press; Logan. 275 pp.Google Scholar
Eva, A. N. 1976. The paleoecology and sedimentology of Middle Eocene larger Foraminifera in Jamaica. Pp. 467475. In: Schafer, C. T. and Pelletier, B. R., eds. First International Symposium on Benthonic Foraminifera of Continental Margins. J. O. Wood, Ltd.; Dartmouth, Nova Scotia. 604 pp.Google Scholar
Fenk, E. M. 1979. Sedimentology and stratigraphy of Middle and Upper Eocene carbonate rocks, Lake, Hernando, and Levy counties, Florida. M.S. thesis. Univ. Fla., Gainesville. 132 pp.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard Univ. Press; Cambridge, Mass. 501 pp.Google Scholar
Gould, S. J. 1982. Change in developmental timing as a mechanism of macroevolution. Pp. 333346. In: Bonner, J. T., ed. Evolution and Development. Springer-Verlag; New York.Google Scholar
Guevara, E. H. and Garcia, R. 1972. Depositional systems and oil-gas reservoirs in the Queen City Formation (Eocene), Texas. Trans. Gulf Coast Assoc. Geol. Soc. 22:122.Google Scholar
Hanken, J. 1985. Morphological novelty in the limb skeleton accompanies miniaturization in salamanders. Science. 229:871874.CrossRefGoogle ScholarPubMed
Howard, J. F. 1974. Neogene microfaunas in the Cape Fear Arch area. Pp. 123138. In: Oakes, R. and DuBar, J. R., eds. Post-Miocene Stratigraphy, Central and Southern Atlantic Coastal Plain. Utah State Univ. Press; Logan. 275 pp.Google Scholar
Huddlestun, P. F. and Hetrick, J. H. 1978. Stratigraphy of the Tobacco Road Sand—a new formation. Pp. 5677. In: Anonymous, Short Contributions to the Geology of Georgia. Dept. Nat. Res.; Atlanta, Ga. 104 pp.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science. 222:11231125.Google Scholar
Kier, P. M. 1963. Tertiary echinoids from the Caloosahatchee and Tamiami formations of Florida. Smithsonian Misc. Coll. 145. 63 pp.Google Scholar
Kier, P. M. 1966. Four new Eocene echinoids from Barbados. Smithsonian Misc. Coll. 151. 28 pp.Google Scholar
Kier, P. M. 1967. Revision of the oligopygoid echinoids. Smithsonian Misc. Coll. 152. 149 pp.Google Scholar
Kier, P. M. 1968. Echinoids from the Middle Eocene Lake City Formation of Georgia. Smithsonian Misc. Coll. 153. 45 pp.Google Scholar
Kier, P. M. 1980. The echinoids of the Middle Eocene Warley Hill Formation, Santee Limestone, and Castle Hayne Formation of North and South Carolina. Smithsonian Contrib. Paleobiol. 39. 102 pp.Google Scholar
Kier, P. M. 1984. Fossil spatangoid echinoids of Cuba. Smithsonian Contrib. Paleobiol. 55. 336 pp.Google Scholar
Kier, P. M. and Lawson, M. 1978. Index of fossil and living echinoids, 1924–1970. Smithsonian Contrib. Paleobiol. 34. 182 pp.Google Scholar
Levinton, J. S. 1982. Marine Ecology. Prentice-Hall; Englewood Cliffs, N.J.526 pp.Google Scholar
McKinney, M. L. 1984. Allometry and heterochrony in an Eocene echinoid lineage: morphological change as a by-product of size selection. Paleobiology. 10:207219.Google Scholar
McKinney, M. L. 1985. Heterochrony and its environmental correlates in Cenozoic echinoids of the Coastal Plain and Caribbean areas. Ph.D. diss. Yale Univ. 279 pp.Google Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology. 8:130142.CrossRefGoogle Scholar
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. J. Paleontol. 60:413.Google Scholar
Peck, D. M., Missimer, T. M., Slater, D. H., Wise, S. W. Jr., and O'Donnell, T. H. 1979. Late Miocene glacial-eustatic lowering of sea level: evidence from the Tamiami Formation of south Florida. Geology. 7:285288.Google Scholar
Pianka, E. R. 1983. Evolutionary Ecology. Harper & Row; New York. 416 pp.Google Scholar
Raff, R. A., Anstrom, J., Huffman, C., Leaf, D., Loo, J., Showman, R., and Wells, D. 1984. Origin of a gene regulatory mechanism in the evolution of echinoderms. Nature. 310:312314.CrossRefGoogle ScholarPubMed
Raff, R. A. and Kaufman, T. C. 1983. Embryos, Genes, and Evolution. Macmillan; New York. 395 pp.Google Scholar
Randazzo, A. F. 1972. The petrography of selected Tertiary limestone type sections in Florida. Trans. Gulf Coast Assoc. Geol. Soc. 22:331342.Google Scholar
Saunders, J. B. 1979. Field Guide to Barbados. 4th Latin Am. Congr.; Barbados. 89 pp.Google Scholar
Sharpe, C. L. 1980. Sedimentological interpretations of Tertiary carbonate rocks from west central Florida. M.S. thesis. Univ. Florida, Gainesville. 170 pp.Google Scholar
Shea, B. T. 1984. Allometry and heterochrony in African apes. Am. J. Phys. Anthropol. 59:275289.Google Scholar
Smith, A. B. and Paul, C. R. C. 1985. Variation in the irregular echinoid Discoides in the early Cenomanian. Spec. Pap. Palaeontol. 33:2937.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution. 27:126.Google Scholar
Stanley, S. M. 1985. Rates of evolution. Paleobiology. 11:1326.Google Scholar
Stearns, S. C. 1976. Life history tactics: a review of the ideas. Q. Rev. Biol. 51:347.Google Scholar
Toulmin, L. D. 1977. Stratigraphic distribution of Paleocene and Eocene fossils in the eastern Gulf Coast region. Ala. Geol. Surv. Monogr. 13, vols. 1 and 2. 602 pp.Google Scholar
Vaughan, T. W. 1945. American Paleocene and Eocene larger Foraminifera. GSA Mem. 9, Part 1. 120 pp.Google Scholar
Vrba, E. S. 1983. Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science. 221:387389.Google Scholar
Zachos, L. G. 1978. Stratigraphy and petrology of two shallow wells in Citrus and Levy counties. M.S. thesis. Univ. Fla., Gainesville. 105 pp.Google Scholar