Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:42:50.236Z Has data issue: false hasContentIssue false

Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d'Orbigny)

Published online by Cambridge University Press:  08 February 2016

Brian T. Huber
Affiliation:
Department of Paleobiology, National Museum of Natural History, MRC: NHB 121, Smithsonian Institution, Washington, D.C. 20560
Jelle Bijma
Affiliation:
Alfred Wegner Institut, Post Office. Box 120161, Columbusstrasse, D-2850 Bremerhaven, Germany
Kate Darling
Affiliation:
Department of Geology and Geophysics, The University of Edinburgh, Grant Institute, West Mains Road, Edinburgh EH9 3JW, Scotland

Abstract

Two living forms of Globigerinella siphonifera (d'Orbigny), presently identified as Type I and Type II, can easily be distinguished and collected by SCUBA divers because of differences in appearance, arrangement of the rhizopodial network, and the presence or absence of commensals. Additional biological differences are apparent from laboratory culture experiments; Type I individuals survive significantly longer than Type II under conditions of darkness and starvation and have significantly slower chamber formation rates. Stable isotopic analyses of Types I and II also reveal notable differences, with Type I consistently yielding more negative δ18O and δ13C values. Results of Mg/Ca ratio analyses indicate that Type II specimens precipitated their shells in slightly cooler (deeper) surface waters than Type I specimens. These observations and results from DNA sequencing unequivocally demonstrate that G. siphonifera Types I and II should be regarded as biological sister species.

Contrarily, biometric analysis of the empty shells reveals few significant differences between G. siphonifera Types I and II. Of all the features measured from X-ray and SEM images of serially dissected specimens, only shell porosity yields readily discernible differences, with Type I adult chambers averaging 10–20% porosity and Type II adult chambers averaging 4–7% porosity. Statistically significant differences between Type I and II populations are revealed in maximum test diameter (Type I is typically larger) and coiling (Type I is typically more evolute), but these differences do not justify species level distinction of Types I and II using traditional paleontological species concepts.

On the basis of the above evidence, and since all specimens were collected at the same location at ∼3–8 m water depth, we conclude that G. siphonifera Types I and II are living examples of cryptic speciation, whereby biological speciation has occurred in the absence of discernable change in shell morphology. However, it is not clear when or where this speciation took place. Preliminary study of deep-sea cores from the Caribbean and Pacific sides of the Isthmus of Panama reveals a predominance of specimens with Type II porosity values, with rare occurrence of specimens yielding Type I porosity values. Systematic downcore measurement of shell porosity and tightness of coiling needs to be extended back to the middle Miocene, when G. siphonifera first appeared, to determine the timing of the Type I and II morphological divergence.

Postulated mechanisms for reproductive isolation and speciation of Types I and II include alloparapatric, depth parapatric, and sympatric speciation. These models could be tested if further analysis of fossil G. siphonifera shells allows determination of the timing of speciation, the preferred depth distribution, and the history of geographic distribution of Types I and II.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Banner, F. T., and Blow, W. H. 1960. The taxonomy, morphology, and affinities of the genera included in the subfamily Hastigerininae. Micropaleontology 6:1931.CrossRefGoogle Scholar
, A. W. H. 1968. Shell porosity of recent planktonic foraminifera as a climatic index. Science 161:881884.CrossRefGoogle ScholarPubMed
, A. W. H. 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. pp. 1100in Ramsay, A. T. S., ed. Oceanic micropaleontology, 1. Academic Press, London.Google Scholar
, A. W. H. 1980. Gametogenic calcification in a spinose planktonic foraminifer Globigerinoides saccullifer (Brady). Marine Micropaleontology 5:283310.CrossRefGoogle Scholar
, A. W. H., and Hamlin, W. H. 1967. Ecology of recent planktonic foraminifera, Part 3, Distribution in the North Atlantic during the summer of 1962. Micropaleontology 13:87106.CrossRefGoogle Scholar
, A. W. H., Anderson, O. R., and Caron, D. A. 1983. Sequence of morphological and cytoplasmic changes during gametogenesis in the planktonic foraminifer Globigerinoides sacculifer (Brady). Micropaleontology 29:15.CrossRefGoogle Scholar
Berger, W. H. 1969. Planktonic foraminifera: Basic morphology and ecologic implications. Journal of Paleontology 43:13691383.Google Scholar
Bijma, J., and Hemleben, C. 1994. Population dynamics of the planktonic foraminifer Globigerinoides sacculifer (Brady) from the central red sea, Part I, Deep-sea research. Oceanographic Research Papers 41:485510.CrossRefGoogle Scholar
Bijma, J., Erez, J., and Hemleben, C. 1990. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. Journal of Foraminiferal Research 20:117127.CrossRefGoogle Scholar
Bijma, J., Faber, W. W. Jr., and Hemleben, C. 1990. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. Journal of Foraminiferal Research 20:95116.CrossRefGoogle Scholar
Brady, H. B. 1879. Notes on some of the reticularian Rhizopoda of the “Challenger” expedition. 2. Additions to the knowledge of porcellaneous and hyaline types. Quarterly Journal of Microscopical Science. New Series 19:261299.Google Scholar
Broecker, W. S. 1974. Chemical oceanography. Harcourt Brace Jovanovitch, New York.Google Scholar
Brooks, D. R., and Mclennan, D. A. 1991. Phylogeny, ecology, and behavior. University of Chicago Press, Chicago.Google Scholar
Brummer, G. J. A., Hemleben, C., and Spindler, M. 1986. Planktonic foraminiferal ontogeny and new perspectives for micropaleontology. Nature. 319:5052.CrossRefGoogle Scholar
Brummer, G. J. A., Hemleben, C., and Spindler, M. 1987. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): A concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny). Marine Micropaleontology 12:357381.CrossRefGoogle Scholar
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Bybell, L. M., Jung, P., and Obando, J. A. 1992. Closure of the Isthmus of Panama: the nearshore marine record in Costa Rica and western Panama. Geological Society of America Bulletin 104:814828.2.3.CO;2>CrossRefGoogle Scholar
Collins, L. S. 1996. Environmental changes in Caribbean shallow waters relative to the closing tropicl American seaway. pp. 130167In Jackson, J. B. C., Coates, A. C., and Budd, A., eds. Environmental and biotic change in the Neogene of Central America. University of Chicago Press, Chicago.Google Scholar
Cronin, T. M., and Dowsett, H. J. 1996. Biotic and oceanographic response to the Pliocene closing of the Central American Isthmus. pp. 76104In Jackson, J. B. C., Coates, A. C., and Budd, A., eds. Environmental and biotic change in the Neogene of Central America. University of Chicago Press, Chicago.Google Scholar
Cronin, T. M., and Ikeya, N. 1990. Tectonic events and climatic change: opportunities for speciation in Cenozoic marine Ostracoda. pp. 210248In Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Crouch, R. W., and Poag, C. W. 1979. Amphistegina gibbosa d'Orbigny from the California borderlands: the Caribbean connection. Journal of Foraminiferal Research 9:85105.CrossRefGoogle Scholar
Darling, K. F., Kroon, D., Wade, C. M., and Leigh Brown, A. J. 1996a. The isolation and amplification of the 18S ribosomal RNA gene from planktonic foraminifers using gametogenic specimens. pp. 249259 in: Moguilevsky, A. and Whatley, R.C., eds. Microfossils and oceanic environments. Proceedings of the International Conference on ODP and the Marine Biosphere, Aberystwyth, April 19-21 1994. University of Wales, Aberystwyth Press.Google Scholar
Darling, K. F., Kroon, D., Wade, C. M., and Leigh Brown, A. J. 1996b. Molecular phylogeny of the planktonic foraminifera. Journal of Foraminiferal Research 26:324330.CrossRefGoogle Scholar
Darling, K. F., Kroon, D., Wade, C. M., and Leigh Brown, A. J. In press. Planktonic foraminiferal evolution and the polyphyletic nature of their benthic origin. Marine Micropaleontology.Google Scholar
Deuser, W. G. 1987. Seasonal variations in isotopic compositon and deep-water fluxes of the tests of perennially abundant planktonic foraminifera of the Sargasso Sea: results from sediment-trap collections and their paleoceanographic significance. Journal of Foraminiferal Research 17:1427.CrossRefGoogle Scholar
Erez, J., Almogi-Labin, A., and Avraham, S. 1991. On the life history of planktonic foraminifera: lunar reproduction cycle in Globigerinoides sacculifer (Brady). Paleoceanography 6:295306.CrossRefGoogle Scholar
Faber, W. W. Jr., Anderson, O. R., Lindsey, J. L., and Caron, D. A. 1988. Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: I. Occurrence and stability of two mutually exclusive chrysophyte endosymbionts and their ultrastructure. Journal of Foraminiferal Research 18:334343.Google Scholar
Faber, W. W. Jr., Anderson, O. R., and Caron, D. A. 1989. Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: II. Effects of two symbiont species on foraminiferal growth and longevity. Journal of Foraminiferal Research 19:185193.Google Scholar
Fairbanks, R. G., Charles, C. D., and Wright, J. D. 1992. Origin of global meltwater pulses. pp. 473500In Taylor, R. E., Long, A., and Kra, R. S., eds. Radiocarbon after four decades: an interdisciplinary perspective. Springer, New York.CrossRefGoogle Scholar
Frerichs, W. E., Heiman, M. E., Borgman, L. E., and , A. W. H. 1972. Latitudinal variations in planktonic foraminiferal test porosity, Part 1, Optical studies. Journal of Foraminiferal Research 2:613.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., Breitinger, I., and Ott, R. 1987. Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions. Marine Micropaleontology 12:305324.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Herm, D. 1969. Marines Pliozän und Pleistozän in Nord-und Mittel-Chile unter besonderer Berücksichtigung der Entwichlung der Mollusken-Faunen. Zitteliana 2:3158.Google Scholar
Hodell, D. A., and Vayavananda, A. 1993. Middle Miocene paleoceanography of the western equatorial Pacific (DSDP Site 289) and the evolution of Globorotalia (Fohsella). Marine Micropaleontology 22:279310.CrossRefGoogle Scholar
Holmes, N. A. 1982. Diel vertical variations in abundance of some planktonic foraminifera from the Rockall Trough, northeastern Atlantic Ocean. Journal of Foraminiferal Research 12:145150.CrossRefGoogle Scholar
Huber, B. T. 1994. Ontogenetic morphometrics of some Late Cretaceous trochospiral planktonic foraminifera from the Austral Realm. Smithsonian Institution Contributions to Paleobiology No. 77.CrossRefGoogle Scholar
Huber, B. T., and Boersma, A. 1994. Cretaceous origination of Zeauvigerina and its relationship to Paleocene biserial planktonic foraminifera. Journal of Foraminiferal Research 24:268287.CrossRefGoogle Scholar
Kahn, M. I. 1979. Non-equilibrium oxygen and carbon isotope fractionation in tests of living planktonic foraminifera. Oceanologica Acta 2:195208.Google Scholar
Keigwin, L. D. Jr. 1982. Neogene planktonic foraminifers from Deep Sea Drilling Project Sites 502 and 503. In: Prell, W. L., Gardner, J. V., et al., eds. Initial Reports of the Deep Sea Drilling Project 68:269288. U.S. Government Printing Office, Washington, D.C.Google Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene planktonic foraminifera, a phylogenetic atlas. Hutchinson Ross, Stroudsburg, Penn.Google Scholar
Knowlton, N. 1993. Sibling species in the sea. Annual Review of Ecological Systematics 24:189216.CrossRefGoogle Scholar
Kroopnik, P. 1974. The dissolved O2-CO2-13C system in the eastern equatorial Pacific. Deep Sea Research 21:211277.Google Scholar
Lazarus, D. 1983. Speciation in pelagic Protista and its study in the planktonic microfossil record: a review. Paleobiology 9:327340.CrossRefGoogle Scholar
Lazarus, D. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatium. Paleobiology 12:175189.CrossRefGoogle Scholar
Lazarus, D., Hillbrecht, H., Spencer-Cervato, C., and Thierstein, H. 1995. Sympatric speciation and phyletic change in Globrotalia truncatulinoides. Paleobiology 21:2851.CrossRefGoogle Scholar
Leigh Brown, A. J., and Simmonds, P. 1994. Analysis of HIV sequence variation. pp. 161188in: Karn, J., ed. HIV—A practical approach. Oxford University Press, Oxford.Google Scholar
Lessios, H. A. 1981. Divergence in allopatry: molecular and morphological differentiation between sea urchins separated by the Isthmus of Panama. Evolution 35:618634.CrossRefGoogle ScholarPubMed
Maidak, B. L., Larsen, N., Mccaughey, M. J., Overbeek, R., Olson, G. J., Fogel, K., Blandy, J., and Woese, C. R. 1994. The ribosomal database project. Nucleic Acids Research 22:34843487.CrossRefGoogle ScholarPubMed
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377389.CrossRefGoogle Scholar
Maynard Smith, J. 1966. Sympatric speciation. American Naturalist 100:637650.CrossRefGoogle Scholar
Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1993. Evolution of depth ecology in the planktonic foraminifera lineage Globorotalia (Fohsella). Geology 21:975978.2.3.CO;2>CrossRefGoogle Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E. 1996. What is gradualism? Cryptic speciation in gradually evolving globorotaliid foraminifera. Paleobiology 22:386405.CrossRefGoogle Scholar
Nürnberg, D. 1995. Magnesium in tests of Neogloboquadrina pachyderma sinistral from high northern and southern latitudes. Journal of Foraminiferal Research 25:350368.CrossRefGoogle Scholar
Nürnberg, D., Bijma, J., and Hemleben, C. 1996a. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica Cosmochimica Acta 60:803814.CrossRefGoogle Scholar
Nürnberg, D., Bijma, J., and Hemleben, C. 1996b. Erratum on Nürnberg et al. Geochimica Cosmochimica Acta 60:24832484.Google Scholar
O'Neil, C. H. 1969. Oxygen isotope fractionation between CO2 and waters, and the isotopic composition of marine atmospheric CO2. Earth and Planetary Science Letters 5:285295.Google Scholar
Olsson, R. K. 1973. Pleistocene history of Globigerina pachyderma (Ehrenberg) in Site 36, DSDP, northeastern Pacific. American Association of Petroleum Geology Bulletin 57:798 [Abstract].Google Scholar
Orbigny, A. D. 1839. Foraminifères. pp. 1224in Sagra, R. D. L., ed. Histoire physique, politique et naturelle de l'île de Cuba. A. Bertrand, Paris.Google Scholar
Parker, F. L. 1962. Planktonic foraminiferal species in Pacific sediments. Micropaleontology 8:219254.CrossRefGoogle Scholar
Parker, F. L. 1973. Late Cenozoic biostratigraphy (planktonic foraminifera) of tropical Atlantic deep-sea sections. Revista Española Micropaleontologa 5:253289.Google Scholar
Pearson, P. N. 1993. A lineage phylogeny for the Paleogene planktonic foraminifera. Micropaleontology 39:193232.CrossRefGoogle Scholar
Pearson, P. N. 1995. Planktonic foraminifer biostratigraphy and the development of pelagic caps on guyots in the Marshall Islands group. In Haggerty, J. A., Premoli Silva, I., Rack, F., and McNutt, M. K., eds. Proceedings of the Ocean Drilling Program, Scientific Results 144:2159. Ocean Drilling Program, College Station, Tex.Google Scholar
Pearson, P. N., and Chaisson, W. P. In press. Late Paleocene to middle Miocene planktonic foraminifer biostratigraphy, Ceara Rise. Proceedings of the Ocean Drilling Program, Scientific Results 154. Ocean Drilling Program, College Station, Tex.Google Scholar
Pearson, P. N., and Shackleton, N. J. 1995. Neogene multispecies planktonic foraminifer stable isotope record, Site 871, Limalok Guyot. In Haggerty, J. A., Premoli Silva, I., Rack, F., and McNutt, M. K., eds. Proceedings of the Ocean Drilling Program, Scientific Results 144: 401-410. Ocean Drilling Program, College Station, TX.CrossRefGoogle Scholar
Reynolds, L. A., and Thunell, R. C. 1986. Seasonal production and morphologic variation of Neogloboquadrina pachyderma (Ehrenberg) in the northeast Pacific. Micropaleontology. 32:118.CrossRefGoogle Scholar
Saito, T. 1976. Geologic significance of coiling direction in the planktonic foraminifera Pulleniatina. Geology 4:305309.2.0.CO;2>CrossRefGoogle Scholar
Shackleton, N. J., and Vincent, E. 1978. Oxygen and carbon isotope studies in Recent foraminifera from the southeast Indian Ocean. Marine Micropaleontology 3:113.CrossRefGoogle Scholar
Spero, H. J., and Williams, D. J. 1989. Opening the carbon isotope “vital effect” black box 1. Seasonal temperatures in the euphotic zone. Paleoceanography 4:593601.Google Scholar
Spindler, M., Anderson, O. R., Hemleben, C., and , A. W. H. 1978. Light and electron microscopic observations of gametogenesis in Hastigerina pelagica (Foraminifera). Journal of Protozoology 25:427433.CrossRefGoogle Scholar
Tabachnick, R. E., and Bookstein, F. L. 1990. The structure of individual variation in Miocene Globorotalia. Evolution 44:416434.CrossRefGoogle ScholarPubMed
Tendal, O. 1990. Why are Foraminiferida foraminifers? In Hemleben, C., Kaminski, M. A., Kuhnt, W., and Scott, D. B., eds. Paleocology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera. NATO ASI Series C 327:1318. Kluwer, Boston.Google Scholar
Van Eijden, A. J. M. 1995. Morphology and relative frequency of planktonic foraminiferal species in relation to oxygen isotopically inferred depth habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 113:267301.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Wade, C. M., Darling, K. F., Kroon, D., and Leigh Brown, A. J. In press. Early evolutionary origin of the planktonic foraminifera inferred from SSU rDNA sequence comparisons. Journal of Molecular Evolution 43.CrossRefGoogle Scholar
Wei, K.-Y. 1987. Multivariate morphometric differentiation of chronospecies in the late Neogene planktonic foraminiferal lineage Globoconella. Marine Micropaleontology 12:183202.CrossRefGoogle Scholar
Wei, K.-Y. 1994. Allometric heterochrony in the Pliocene-Pleistocene planktonic foraminiferal clade Globoconella. Paleobiology 20:6684.CrossRefGoogle Scholar
Wei, K.-Y., and Kennett, J. P. 1988. Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella. Paleobiology 14:345363.CrossRefGoogle Scholar
Wiles, W. W. 1967. Pleistocene changes in the pore concentration of a planktonic foraminiferal species from the Pacific Ocean. Progress in Oceanography 4:153160.CrossRefGoogle Scholar
Woodring, W. P. 1966. The Panama landbridge as a sea barrier. Proceedings of the American Philosophical Society 110:425433.Google Scholar