Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:10:56.013Z Has data issue: false hasContentIssue false

Comparative biogeographic analysis of planktic foraminiferal survivorship across the Cretaceous/Tertiary (K/T) boundary

Published online by Cambridge University Press:  08 February 2016

Norman MacLeod
Affiliation:
Department of Geological and Geophysical Sciences, Princeton University, Princeton, New Jersey 08544
Gerta Keller
Affiliation:
Department of Geological and Geophysical Sciences, Princeton University, Princeton, New Jersey 08544

Abstract

It is now widely recognized that a large number of Cretaceous planktic foraminiferal species are commonly found associated with fully Danian faunas in many K/T boundary sections and deep-sea cores. This “Cretaceous” fauna has traditionally been regarded as representing the reworking of older Cretaceous sediments into younger strata, though recent isotopic data from some species indicates that, at least in these instances, the reworking hypothesis is false. To further test this reworking hypothesis the biogeography of this “Cretaceous” fauna is compared to the underlying uppermost Maastrichtian biogeography and to the biogeography of lowermost Danian planktic foraminiferal faunas. Results show that there is no regular decline in species richness, extinction, or faunal co-occurrence values for this “Cretaceous” fauna at progressively higher (=younger) Danian stratigraphic horizons. Moreover, there is no compelling association between the stratigraphic persistence of this “Cretaceous” fauna and shallow depositional settings. Instead, this fauna is characterized by: (1) a close (and predictive) association between “Cretaceous” and indigenous Danian species richness values throughout the lower Danian, (2) a close numerical and geographic correspondence between Danian speciation and the disappearance of “Cretaceous” species from the Danian fossil record, and (3) a pronounced similarity between changes in the general biogeographic structures of the “Cretaceous” and associated Danian faunas throughout the study interval. These data suggest that the K/T planktic foraminiferal extinction event exhibited a marked geographic structure with low and middle latitude faunas experiencing differentially high extinction rates in the lowermost Danian zones P0 and P1a and high latitude survivor faunas persisting more or less unchanged into the overlying zone, P1b and P1c. Taken together, these results challenge the traditional concept of an instantaneous uppermost Cretaceous planktic foraminiferal mass extinction and its proposed causal connection to bolide impact.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adelseck, C. G. Jr. 1978. Dissolution of deep-sea carbonate: preliminary calibration of preservational and morphologic aspects. Deep-Sea Research 25:11671185.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., and Michael, H. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208:10951108.CrossRefGoogle ScholarPubMed
Archibald, J. D., and Clemens, W. A. 1982. Late Cretaceous extinctions. American Scientist 70:377385.Google Scholar
Archibald, J. D., and Clemens, W. A. 1984. Mammal evolution near the Cretaceous–Tertiary boundary. Pp. 339371in Berggren, W. A. and Van Couvering, J. A., eds., Catastrophes and earth history: the new uniformitarianism. Princeton University Press, Princeton.CrossRefGoogle Scholar
Barker, P. F., et al. 1988. Proceedings of the Ocean Drilling Project, initial reports 113. College Station, Tex.CrossRefGoogle Scholar
Barrera, E., and Keller, G. 1990. Foraminiferal stable isotope evidence for gradual decrease of marine productivity and Cretaceous species survivorship in the earliest Danian. Paleoceanography 5:867890.CrossRefGoogle Scholar
Barron, J., et al. 1989. Proceedings of the Ocean Drilling Project, initial reports 119. College Station, Tex.CrossRefGoogle Scholar
, A. W. H. 1977. An ecological, zoogeographic, and taxonomic review of Recent planktonic foraminifera. Pp. 188in Ramsay, A. J. S., ed. Oceanic micropaleontology, Vol. 1. Academic Press, London.Google Scholar
, A. W. H., and Tolderlund, D. S. 1971. Distribution and ecology of living planktonic Foraminifera in surface waters of the Atlantic and Indian Oceans. Pp. 105149in Funnell, B. M., and Riedel, W. R., eds., The micropaleontology of the oceans. Cambridge University Press, Cambridge.Google Scholar
Berger, W. H. 1968. Planktonic foraminifera: selective solution and paleoclimatic interpretation. Deep-Sea Research 15:3143.Google Scholar
Berger, W. H. 1970. Planktonic foraminifera: selective solution and the lysocline. Marine Geology 8:111138.CrossRefGoogle Scholar
Berger, W. H. 1979. Preservation of foraminifera. Pp. 105155in Lipps, J. H., ed. Foraminiferal ecology and paleoecology. Society of Economic Paleontologists and Mineralogists, Houston.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., and Flynn, J. J. 1985. Jurassic to Paleogene: Part 2, Paleogene geochronology and chronostratigraphy. Pp. 141195in Snelling, N. J., ed., The Chronology of the geologic record. Geological Society of London Memoir 10.Google Scholar
Boersma, A. 1978. Foraminifera. Pp. 1977in Haq, B. U. and Boersma, A., eds. Introduction to marine micropaleontology. Elsevier, New York.Google Scholar
Boersma, A. 1984. Cretaceous–Tertiary planktonic foraminifers from the south-eastern Atlantic, Walvis Ridge area, Deep Sea Drilling Project Leg 74. Pp. 501523in Moore, T. C., Rabinowitz, P. D., et al., eds. Initial Reports of the Deep Sea Drilling Project, Vol. 74. U. S. Government Printing Office, Washington, D.C.Google Scholar
Boltovskoy, E., and Wright, R. 1976. Recent Foraminifera. Dr. W. Junk b.v., The Hague.CrossRefGoogle Scholar
Braiser, M. D. 1988. Foraminiferid extinction and ecological collapse during global biological events. Pp. 3764in Larwood, G. P., ed., Extinction and survival in the fossil record. Systematics Association, Vol. 34. Clarendon, Oxford.Google Scholar
Brinkhuis, H., and Zachariasse, W. J. 1988. Dinoflagellate cysts, sea level changes and planktonic foraminifers across the Cretaceous–Tertiary boundary at El Haria, northwest Tunisia. Marine Micropaleontology 13:153191.CrossRefGoogle Scholar
Brinton, E. 1962. The distribution of Pacific euphausiids. Bulletin of the Scripps Institution of Oceanography 8:51270.Google Scholar
Brown, J. H. 1988. Species diversity. Pp. 5789in Myers, A. A., and Giller, P. S., eds. Analytical biogeography: an integrated approach to the study of animal and plant distributions. Chapman and Hall, London.CrossRefGoogle Scholar
Canudo, J. I., Keller, G., and Molina, E. 1991. Cretaceous/Tertiary boundary extinction pattern and faunal turnover at Agost and Caravaca, S. E. Spain. Marine Micropaleontology 17:319341.CrossRefGoogle Scholar
Crick, R. 1980. Integration of paleobiogeography and paleogeography: evidence from Arengian nautiloid biogeography. Journal of Paleontology 54:12181236.Google Scholar
Culver, S. J. 1993. Foraminifera. Pp. 203247in Lipps, 1993.Google Scholar
D'Hondt, S., and Herbert, T. 1992. Comment on: hiatus distributions and mass extinctions at the Cretaceous/Tertiary Boundary. Geology 20:380381.2.3.CO;2>CrossRefGoogle Scholar
D'Hondt, S., and Keller, G. 1991. Some patterns of planktic foraminiferal assemblage turnover at the Cretaceous–Tertiary boundary. Marine Micropaleontology 17:77118.CrossRefGoogle Scholar
Douglas, R. G. 1971. Cretaceous foraminifera from the northwestern Pacific Ocean: Leg 6, Deep Sea Drilling Project. Pp. 10271053in Fischer, A. G., Heezen, B. C., et al., eds. Initial reports of the Deep Sea Drilling Project, Vol. 6. U. S. Government Printing Office, Washington, D.C.Google Scholar
Eldredge, N. 1991. The miner's canary: unraveling the mysteries of extinction. Prentice Hall, New York.Google Scholar
Ghent, A. W. 1972. A method for exact testing of 2 × 2, 2 × 3, 3 × 3, and other contingency tables employing binomial coefficients. American Midland Naturalist 88:1527.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561166.CrossRefGoogle ScholarPubMed
Harper, C. W. Jr. 1975. Standing diversity of fossil groups in successive intervals of geologic time: a new measure. Journal of Paleontology 49:752757.Google Scholar
Hedberg, H., George, N., Pomerol, C., Salvador, A., and Stöcklin, J. 1976. International stratigraphic guide. Wiley, New York.Google Scholar
Hedgpeth, J. W. 1957. Marine biogeography. Geological Society of America Memoir 67:359382.CrossRefGoogle Scholar
Heinberg, C. 1979. Bivalves from the latest Maastrichtian Stvens Klint and their stratigraphic affinities. Pp. 5864in Birkelund, T. and Bromely, R. G., eds. Cretaceous–Tertiary boundary Events Symposium, Vol. 1. The Maastrichtian and Danian of Denmark. University of Copenhagen.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Herbert, T. D., and D'Hondt, S. 1990. Precessional climate cyclicity in Late Cretaceous–Early Tertiary marine sediments: a high resolution chronometer of Cretaceous–Tertiary boundary events. Earth and Planetary Science Letters 99:263275.CrossRefGoogle Scholar
Jenkins, D. G. 1992. Predicting extinctions of some extant planktic foraminifera. Marine Micropaleontology 19:239243.CrossRefGoogle Scholar
Jiang, M. J., and Gartner, S. 1986. Calcareous nannofossil succession across the Cretaceous/Tertiary boundary in east-central Texas. Micropaleontology 32:232255.CrossRefGoogle Scholar
Keller, G. 1988. Extinction survivorship and evolution of planktic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Marine Micropaleontology 13:239263.CrossRefGoogle Scholar
Keller, G. 1989a. Extended Cretaceous/Tertiary boundary extinctions and delayed population change in planktonic foraminifera from Brazos River, Texas. Paleoceanography 4:287332.CrossRefGoogle Scholar
Keller, G. 1989b. Extended period of extinction across the Cretaceous/Tertiary boundary in planktonic foraminifera of continental shelf sections: implications for impact and volcanism theories. Geological Society of America Bulletin 101:14081419.2.3.CO;2>CrossRefGoogle Scholar
Keller, G. 1993. The Cretaceous–Tertiary boundary transition in the Antarctic Ocean and its global implications. Marine Micropaleontology 21:145.CrossRefGoogle Scholar
Keller, G., Barrera, E., Schmitz, B., and Mattson, E.In press. Long-term instability but no mass extinction or major δ13C shift in planktic foraminifera across the Cretaceous/Tertiary boundary in northern high latitudes: evidence from Nye Kløv, Denmark. Bulletin of the Geological Society of America.Google Scholar
Keller, G. and Benjamini, C. 1991. Paleoenvironment of the eastern Tethys in the Early Paleocene. Palaios 6:439464.CrossRefGoogle Scholar
Keller, G., and Lindinger, M. 1989. Stable isotope, TOC and CaCO3 record across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology 73:243265.CrossRefGoogle Scholar
Killingsley, J. S. 1983. Effects of diagenetic recrystallization on 18O/16O values in deep-sea sediments. Nature (London) 301:594596.CrossRefGoogle Scholar
Kitchell, J. A., Clark, D. L., and Gombos, A. M. Jr. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios 1:504511.CrossRefGoogle Scholar
Knoll, A. H., and Lipps, J. H. 1993. Evolutionary history of prokaryotes and protists. Pp. 1929in Lipps, 1993.Google Scholar
Labandiera, C. C. 1992. Diets, diversity and disparity: determining the effect of the terminal Cretaceous extinction on insect evolution. Fifth North American Paleontological Convention, Abstracts and Programs, Special Publication of the Paleontological Society 6:174.CrossRefGoogle Scholar
Lipps, J. H. 1979. Ecology and paleoecology of planktic foraminifera, Pp. 1929in Lipps, J. H., and Berger, W. H. ed., Foraminiferal Ecology and Paleoecology, Society of Economic Paleontologists and Mineralogists Short Course No. 6, Houston.CrossRefGoogle Scholar
Lipps, J. H. 1993. Fossil prokaryotes and protists. Blackwell, Boston.Google Scholar
Liu, C., and Olsson, R. K. 1992a. Criteria for recognizing survivor microfossil species during mass extinction, planktonic foraminifera at K/T boundary as example. Geological Society of America Abstracts with Programs 24:A29.Google Scholar
Liu, C., and Olsson, R. K. 1992b. Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. Journal of Foraminiferal Research 22:328346.CrossRefGoogle Scholar
MacLeod, N. 1991. Punctuated anagenesis and the importance of stratigraphy to paleobiology. Paleobiology 17:167188.CrossRefGoogle Scholar
MacLeod, N. 1993. The Maastrichtian-Danian radiation of triserial and biserial planktic foraminifera: testing phylogenetic and adaptational hypotheses in the (micro)fossil record. Marine Micropaleontology 21:47100.CrossRefGoogle Scholar
MacLeod, N.In press. Biogeography of Cretaceous/Tertiary (K/T) planktic foraminifera. Historical Biology.Google Scholar
MacLeod, N., and Keller, G. 1990. Foraminiferal phenotypic response to environmental change across the Cretaceous–Tertiary boundary. Geological Society of American Abstracts with Programs 22:A106.Google Scholar
MacLeod, N., and Keller, G. 1991a. Hiatus distribution and mass extinction at the K/T boundary. Geology 19:497501.2.3.CO;2>CrossRefGoogle Scholar
MacLeod, N., and Keller, G. 1991b. How complete are Cretaceous/Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation. Bulletin, Geological Society of America 103:14391457.2.3.CO;2>CrossRefGoogle Scholar
MacLeod, N., and Keller, G. 1992. Reply to D'Hondt, S., and Herbert, T. comment on: hiatus distributions and mass extinctions at the Cretaceous/Tertiary boundary. Geology 20:381382.Google Scholar
MacLeod, N., Keller, G., and Kitchell, J. A. 1990. Progenesis in Late Eocene populations of Subbotina linaperta (Foraminifera) from the western north Atlantic. Marine Micropaleontology 16:219240.CrossRefGoogle Scholar
Malmgren, B. A. 1983. Ranking of dissolution susceptibility of planktonic foraminifera at high latitudes of the South Atlantic Ocean. Marine Micropaleontology 8:183191.CrossRefGoogle Scholar
Malmgren, B. A. 1985. Dissolution effects on size distribution of recent planktonic foraminiferal species, South Atlantic Ocean. Pp. 1123in Hsu, K. J. and Weissert, H. J., eds. South Atlantic paleoceanography. Cambridge University Press, Cambridge.Google Scholar
Malmgren, B. A. 1987. Differential dissolution of upper Cretaceous planktonic foraminifera from a temperate region of the south Atlantic Ocean. Marine Micropaleontology 11:251271.CrossRefGoogle Scholar
Malmgren, B. A. 1991. Biogeographic patterns in terminal Cretaceous planktonic foraminifera from Tethyan and warm Transitional waters. Marine Micropaleontology 18:7399.CrossRefGoogle Scholar
Mary, C., Moreau, M.-G., Orue-Etxebarria, X., Apellaniz, E., and Courtillot, V. 1991. Biostratigraphy and magnetostratigraphy of the Cretaceous/Tertiary Sopelana section (Basque country). Earth and Planetary Science Letters 106:133150.CrossRefGoogle Scholar
Newell, N. D. 1963. Crises in the history of life. Scientific American 208:7692.CrossRefGoogle Scholar
Newell, N. D. 1967. Revolutions in the history of life. Pp. 6391in Albritton, C. C. Jr., ed. Uniformity and simplicity: a symposium on the principle of the uniformity of nature. Geological Society of America Special Paper 89.Google Scholar
Olsson, R. K., and Liu, C. 1993. Controversies on the placement of Cretaceous–Paleogene boundary and the K/P mass extinction of planktonic foraminifera. Palaios 8:127139.CrossRefGoogle Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Liu, C. 1992. Wall texture classification of planktonic foraminifera genera in the lower Danian. Journal of Foraminiferal Research 22:195213.CrossRefGoogle Scholar
Parker, F. L., and Berger, W. H. 1971. Faunal solution patterns of planktonic foraminifera in surface sediments of the South Pacific. Deep-Sea Research 18:73107.Google Scholar
Perch-Nielsen, K., McKenzie, J., and He, Q. 1982. Biostratigraphy and isotope stratigraphy of the ‘catastrophic’ extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. Special Paper of the Geological Society of America 190:291296.Google Scholar
Raup, D. M. 1982. Large body impacts and terrestrial evolution meeting, October 19-22, 1981. Paleobiology 8:13.CrossRefGoogle Scholar
Raup, D. M. 1986. The nemesis affair: a story of the death of the dinosaurs and the ways of science. Norton, New York.Google Scholar
Raup, D. M. 1991. Extinction: bad genes or bad luck? Norton, New York.Google ScholarPubMed
Raup, D. M. 1992a. Large-body impact and extinction in the Phanerozoic. Paleobiology 18:8088.CrossRefGoogle ScholarPubMed
Raup, D. M. 1992b. Large-body impact: the least unlikely cause of pulsed extinction. Fifth North American Paleontological Convention, Abstracts and Programs, Special Publication of the Paleontological Society No. 6, p. 240.Google Scholar
Raup, D. M., and Crick, R. 1979. Measurement of faunal similarity in paleontology. Journal of Paleontology 53:12131227.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geological past. Proceedings of the National Academy of Sciences, USA 81:801805.CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1986. Periodic extinction of families and genera. Science 241:9496.CrossRefGoogle Scholar
Schmitz, B., Keller, G., and Stenvall, O. 1992. Stable isotope and foraminiferal changes across the Cretaceous–Tertiary boundary at Stvens Klint, Denmark: arguments for long-term oceanic instability before and after bolide-impact event. Palaeogeography, Palaeoclimatology, Palaeoecology 96:233260.CrossRefGoogle Scholar
Sloan, R. E., Rigby, J. K., Van Valen, L. M., and Gabriel, D. 1986. Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek Formation. Science 232:629633.CrossRefGoogle ScholarPubMed
Smit, J. 1990. Meteorite impact, extinctions and the Cretaceous–Tertiary boundary. Geologie en Mijnbouw 69:187204.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry: the principles and practice of statistics in biological research, 2d ed.W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1987. Extinction. W. H. Freeman, New York.Google Scholar
Sullivan, R. M. 1987. A reassessment of reptilian diversity across the Cretaceous–Tertiary boundary. Contributions in Science 391:126.CrossRefGoogle Scholar
Surlyk, F. 1990. Mass extinction events, Sec. 2.13.6 Cretaceous–Tertiary (Marine). Pp. 198203in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology: a synthesis. Blackwell Scientific, Oxford.Google Scholar
Sweet, A. R., Braman, D. R., and Lerbekno, J. F. 1990. Palynofloral response to K/T boundary events: a transitory interruption within a dynamic system. Special Paper of the Geological Society of America 247:457469.CrossRefGoogle Scholar
Thomas, E. 1990. Late Cretaceous–early Eocene mass extinctions in the deep sea. Special Paper of the Geological Society of America 247:481495.CrossRefGoogle Scholar
Thunell, R. C., and Honjo, S. 1981. Calciate dissolution and the modification of planktonic foraminiferal assemblages. Marine Micropaleontology 6:169182.CrossRefGoogle Scholar
White, B. N. 1986. The isthmian link, antitropicality and American biogeography: Distributional history of the Atherinopsinae (Pisces: Atherinidae). Systematic Zoology 35:176194.CrossRefGoogle Scholar
Widmark, J. G. and Malmgren, B. A. 1992. Benthic foraminiferal changes across the Cretaceous–Tertiary boundary in the deep sea; DSDP Sites 525, 527, and 465. Journal of Foraminiferal Research 22:81113.CrossRefGoogle Scholar
Zinsmeister, W. J., Feldmann, R. M., Woodburne, M. O., and Elliot, D. H. 1989. Latest Cretaceous/earliest Tertiary transition on Seymour Island, Antarctica. Journal of Paleontology 63:731738.CrossRefGoogle Scholar