Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:46:37.876Z Has data issue: false hasContentIssue false

Climate change and the latitudinal selectivity of ancient marine extinctions

Published online by Cambridge University Press:  23 November 2018

Carl J. Reddin
Affiliation:
GeoZentrum Nordbayern, Department of Geography and Geosciences, Universität Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany. E-mail: carl.j.reddin@fau.de, adam.kocsis@fau.de, wolfgang.kiessling@fau.de
Ádám T. Kocsis
Affiliation:
GeoZentrum Nordbayern, Department of Geography and Geosciences, Universität Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany. E-mail: carl.j.reddin@fau.de, adam.kocsis@fau.de, wolfgang.kiessling@fau.de
Wolfgang Kiessling
Affiliation:
GeoZentrum Nordbayern, Department of Geography and Geosciences, Universität Erlangen-Nürnberg, Loewenichstraße 28, 91054 Erlangen, Germany. E-mail: carl.j.reddin@fau.de, adam.kocsis@fau.de, wolfgang.kiessling@fau.de

Abstract

Geologically rapid climate change is anticipated to increase extinction risk nonuniformly across the Earth's surface. Tropical species may be more vulnerable than temperate species to current climate warming because of high tropical climate velocities and reduced seawater oxygen levels. To test whether rapid warming indeed preferentially increased the extinction risk of tropical fossil taxa, we combine a robust statistical assessment of latitudinal extinction selectivity (LES) with the dominant views on climate change occurring at ancient extinction crises. Using a global data set of marine fossil occurrences, we assess extinction rates for tropical and temperate genera, applying log ratios to assess effect size and Akaike weights for model support. Among the classical “big five” mass extinction episodes, the end-Permian mass extinction exhibits temperate preference of extinctions, whereas the Late Devonian and end-Triassic selectively hit tropical genera. Simple links between the inferred direction of climate change and LES are idiosyncratic, both during crisis and background intervals. More complex models, including sampling patterns and changes in the latitudinal distribution of continental shelf area, show tropical LES to be generally associated with raised tropical heat and temperate LES with global cold temperatures. With implications for the future, our paper demonstrates the consistency of high tropical temperatures, habitat loss, and the capacity of both to interact in generating geographic patterns in extinctions.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.tk82cd1

References

Literature Cited

Alroy, J. 2015. A more precise speciation and extinction rate estimator. Paleobiology 41:633639.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Andersson, A. J., Mackenzie, F. T., and Bates, N. R.. 2008. Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series 373:265273.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J.. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.Google Scholar
Baresel, B., Bucher, H., Bagherpour, B., Brosse, M., Guodun, K., and Schaltegger, U.. 2017. Timing of global regression and microbial bloom linked with the Permian–Triassic boundary mass extinction: implications for driving mechanisms. Scientific Reports 7:310.Google Scholar
Bond, D. P. G., and Grasby, S. E.. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 478:329.Google Scholar
Bond, D. P. G., and Wignall, P. B.. 2008. The role of sea-level change and marine anoxia in the Frasnian–Famennian (Late Devonian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 263:107118.Google Scholar
Bozinovic, F., and Pörtner, H. O.. 2015. Physiological ecology meets climate change. Ecology and Evolution 5:10251030.Google Scholar
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.. 2018. Declining oxygen in the global ocean and coastal waters. Science 359:eaam7240.Google Scholar
Brugger, J., Feulner, G., and Petri, S.. 2017. Baby, it's cold outside: climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters 44:419427.Google Scholar
Burnham, K. P., and Anderson, D. R.. 2003. Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, Berlin.Google Scholar
Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., Moore, P. J., Brown, C. J., Bruno, J. F., Duarte, C. M., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier, S., Williams, K. J., Poloczanska, E. S., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier, S., Williams, K. J., and Poloczanska, E. S.. 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492495.Google Scholar
Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X., Karanewsky, C. J., Yeong Ryu, H., Sbeglia, G. C., Spagnolo, F., Waldron, J. B., Warsi, O., and Wiens, J. J.. 2012. How does climate change cause extinction? Proceedings of the Royal Society of London B 280:20121890.Google Scholar
Chaudhary, C., Saeedi, H., and Costello, M. J.. 2016. Bimodality of latitudinal gradients in marine species richness. Trends in Ecology and Evolution 31:670676.Google Scholar
Clapham, M. E., and Payne, J. L.. 2011. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39:10591062.Google Scholar
Coffin, M., Duncan, R., Eldholm, O., Fitton, J. G., Frey, F., Larsen, H. C., Mahoney, J., Saunders, A., Schlich, R., and Wallace, P.. 2006. Large igneous provinces and scientific ocean drilling: status quo and a look ahead. Oceanography 19:150160.Google Scholar
Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., and Talley, L. D.. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4:1137.Google Scholar
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W.. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.Google Scholar
Finnegan, S., Anderson, S. C., Harnik, P. G., Simpson, C., Tittensor, D. P., Byrnes, J. E., Finkel, Z. V., Lindberg, D. R., Liow, L. H., Lockwood, R., Lotze, H. K., McClain, C. R., McGuire, J. L., O'Dea, A., and Pandolfi, J. M.. 2015. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348:567570.Google Scholar
Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction. Paleobiology 20:424444.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.Google Scholar
Fox, J., and Weisberg, S.. 2011. An R companion to applied regression, 2nd ed. Sage, Thousand Oaks, Calif.Google Scholar
Golonka, J. 2002. Plate-tectonic maps of the Phanerozoic. In Kiessling, W., Flügel, E., and Golonka, J., eds. Phanerozoic reef patterns. Special Publications of SEPM (Society for Sedimentary Geology) 72:2175.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. 2012. The geologic time scale 2012. Elsevier, Amsterdam.Google Scholar
Hallam, A., and Wignall, P. B.. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48:217250.Google Scholar
Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O'Dea, A., Pandolfi, J., Simpson, C., and Tittensor, D. P.. 2012. Extinction in ancient and modern seas. Trends in Ecology and Evolution 27:608617.Google Scholar
Holland, S. M., and Patzkowsky, M. E.. 2015. The stratigraphy of mass extinction. Palaeontology 58:903924.Google Scholar
Isozaki, Y., and Aljinović, D.. 2009. End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: end of gigantism in tropical seas by cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 284:1121.Google Scholar
Isozaki, Y., Kawahata, H., and Ota, A.. 2007. A unique carbon isotope record across the Guadalupian–Lopingian (Middle–Upper Permian) boundary in mid-oceanic paleo-atoll carbonates: the high-productivity “Kamura event” and its collapse in Panthalassa. Global and Planetary Change 55:2138.Google Scholar
Joachimski, M. M., and Buggisch, W.. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30:711714.Google Scholar
Joachimski, M. M., Simon, L., van Geldern, R., and Lécuyer, C.. 2005. Boron isotope geochemistry of Paleozoic brachiopod calcite: implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic. Geochimica et Cosmochimica Acta 69:40354044.Google Scholar
Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J., and Weddige, K.. 2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284:599609.Google Scholar
Kemp, D. B., Eichenseer, K., and Kiessling, W.. 2015. Maximum rates of climate change are systematically underestimated in the geological record. Nature Communications 6:8890.Google Scholar
Kiessling, W., and Aberhan, M.. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33:414434.Google Scholar
Kiessling, W., and Kocsis, Á. T.. 2015. Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology 41:402414.Google Scholar
Kiessling, W., and Simpson, C.. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17:5667.Google Scholar
Kiessling, W., Aberhan, M., Brenneis, B., and Wagner, P. J.. 2007. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244:201222.Google Scholar
Kiessling, W., Aberhan, M., and Villier, L.. 2008. Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nature Geoscience 1:527530.Google Scholar
Kiessling, W., Simpson, C., and Foote, M.. 2010. Reefs as cradles of evolution and sources of biodiversity in the phanerozoic. Science 327:196198.Google Scholar
Kiessling, W., Simpson, C., Beck, B., Mewis, H., and Pandolfi, J. M.. 2012. Equatorial decline of reef corals during the last Pleistocene interglacial. Proceedings of the National Academy of Sciences USA 109:2137821383.Google Scholar
Kocsis, Á. T., Reddin, C. J., Alroy, J. and Kiessling, W. 2018. The R package divDyn for quantifying diversity dynamics using fossil sampling data. bioRxiv. doi:10.1101/423780Google Scholar
Korte, C., Hesselbo, S., Jenkyns, H., Rickaby, R. E. ., and Spotl, C.. 2009. Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. Journal of the Geological Society, London 166:431445.Google Scholar
Mantyka-Pringle, C. S., Martin, T. G., and Rhodes, J. R.. 2012. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18:12391252.Google Scholar
McKinney, M. L., and Oyen, C. W.. 1989. Causation and nonrandomness in biological and geological time series: temperature as a proximal control of extinction and diversity. Palaios 4:315.Google Scholar
Munday, P. L. 2004. Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology 10:16421647.Google Scholar
Nguyen, K. D. T., Morley, S. A., Lai, C. H., Clark, M. S., Tan, K. S., Bates, A. E., and Peck, L. S.. 2011. Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS ONE 6:613.Google Scholar
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.Google Scholar
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.Google Scholar
Pinheiro, J, Bates, D, DebRoy, S, Sarkar, D, and R Core Team. 2018. nlme: linear and nonlinear mixed effects models. R package, Version 3.1-131.1.Google Scholar
Pörtner, H. O., and Langenbuch, M.. 2005. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. Journal of Geophysical Research 110:C09S10.Google Scholar
Powell, M. G. 2009. The latitudinal diversity gradient of brachiopods over the past 530 million years. Journal of Geology 117:585594.Google Scholar
Powell, M. G., Moore, B. R., and Smith, T. J.. 2015. Origination, extinction, invasion, and extirpation components of the brachiopod latitudinal biodiversity gradient through the Phanerozoic Eon. Paleobiology 41:330341.Google Scholar
Raup, D., and Jablonski, D.. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.Google Scholar
Raup, D. M., and Boyajian, G. E.. 1988. Patterns of generic extinction in the fossil record patterns of generic extinction in the fossil record. Paleobiology 14:109125.Google Scholar
Raup, D. M., and Sepkoski, J. J. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
R Development Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Reddin, C. J., Bothwell, J. H., and Lennon, J. J.. 2015. Between-taxon matching of common and rare species richness patterns. Global Ecology and Biogeography 24:14761486.Google Scholar
Reddin, C. J., Kocsis, A. T., and Kiessling, W.. 2018. Marine invertebrate migrations trace climate change over 450 million years. Global Ecology and Biogeography 27:704713.Google Scholar
Royall, R. 2004. The Likelihood Paradigm for Statistical Evidence. Pp.123 in Taper, M. L. and Lele, S. R., eds. The nature of scientific evidence. University of Chicago Press, Chicago.Google Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., and Blackburn, T. J.. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387390.Google Scholar
Song, H., Wignall, P. B., Chu, D., Tong, J., Sun, Y., Song, H., He, W., and Tian, L.. 2014. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Scientific Reports 4:4132.Google Scholar
Stanley, S. M. 1987. Extinction. Scientific American Books, New York, p. 43.Google Scholar
Storch, D., Menzel, L., Frickenhaus, S., and Pörtner, H. O.. 2014. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Global Change Biology 20:30593067.Google Scholar
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320:655659.Google Scholar
Valentine, J. W. 1974. Temporal bias in extinctions among taxonomic categories. Journal of Paleontology 48:549552.Google Scholar
Vamosi, J. C., and Vamosi, S. M.. 2008. Extinction risk escalates in the tropics. PLoS ONE 3:813.Google Scholar
Van De Schootbrugge, B., and Wignall, P. B.. 2016. A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine 153:332354.Google Scholar
Vaquer-Sunyer, R., and Duarte, C. M.. 2011. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Global Change Biology 17:17881797.Google Scholar
Veizer, J., and Prokoph, A.. 2015. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Science Reviews 146:92104.Google Scholar
Vermeer, M., and Rahmstorf, S.. 2009. Global sea level linked to global temperature. Proceedings of the National Academy of Sciences USA 106:2152721532.Google Scholar
Vilhena, D. A., Harris, E. B., Bergstrom, C. T., Maliska, M. E., Ward, P. D., Sidor, C. A., Strömberg, C. A. E., and Wilson, G. P.. 2013. Bivalve network reveals latitudinal selectivity gradient at the end-Cretaceous mass extinction. Scientific Reports 3:15.Google Scholar
Visser, K., Thunell, R., and Stott, L.. 2003. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421:152155.Google Scholar
Wagenmakers, E.-J., and Farrell, S.. 2004. AIC model selection using Akaike weights. Psychonomic Bulletin and Review 11:192196.Google Scholar
Wang, X.F. 2010. fANCOVA: nonparametric analysis of covariance. R package, Version 0.5-1.Google Scholar
Wignall, P. B., and Twitchett, R. J.. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272:11551158.Google Scholar
Wright, N., Zahirovic, S., Müller, R. D., and Seton, M.. 2013. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences 10:15291541.Google Scholar
Ziegler, A. M., Eshel, G., McAllister Rees, P., Rothfus, T. A., Rowley, D. B., and Sunderlin, D.. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia 36:227254.Google Scholar
Zou, C., Qiu, Z., Poulton, S. W., Dong, D., Wang, H., Chen, D., Lu, B., Shi, Z., and Tao, H.. 2018. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology 46:535538.Google Scholar