Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T03:52:45.306Z Has data issue: false hasContentIssue false

An ecomorphospace for the Ammonoidea

Published online by Cambridge University Press:  05 March 2018

Sonny A. Walton
Affiliation:
Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany. E-mail: dieter.korn@mfn-berlin.de.
Dieter Korn
Affiliation:
Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany. E-mail: dieter.korn@mfn-berlin.de.

Abstract

The fossil conchs of ammonoids provide valuable information about the life habits of this extinct group. A new conch measurement, the apertural surface area (ASarea), is introduced here along with modeled sizes of the buccal mass and the hyponome, based on ratios of these organs in comparison with the aperture height from the Recent Nautilus pompilius. A principal components analysis was performed using the three main characters: (1) apertural surface area index (i.e., the ratio of the apertural surface and the conch diameter), (2) buccal mass area index (i.e., the ratio between the buccal mass area and the ASarea), and (3) coiling rate of the conch. It revealed an ecomorphospace where life history traits can be tentatively assigned to species of the Ammonoidea. In this morphospace, Recent Nautilus has a marginal position, being one of the ectocochleate cephalopods with best properties for active life (capacity for handling large food items, rather good mobility). In contrast, most ammonoids possessed, at comparable conch sizes, much smaller buccal apparatuses and hyponomes, suggesting a more passive life history with reduced mobility potential and reduced capacities for larger prey items.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bonnot, A., Boursicot, P.-Y., Ferchaud, P., and Marchand, D.. 2008. Les Pseudoperisphinctinae (Ammonitina, Perisphinctidae) de l’horizon à Leckenbyi (Callovien supérieur, zone à Athleta) de Montreuil-Bellay (Maine-et-Loire, France) et description d’une nouvelle espèce, Choffatia isabellae . Carnets de Geologie 5:114.Google Scholar
Boyle, P., and Rodhouse, P.. 2005. Cephalopods: ecology and fisheries. Blackwell Science, Oxford.CrossRefGoogle Scholar
De Baets, K., Klug, C., Korn, D., and Landman, N. H.. 2012. Early evolutionary trends in ammonoid embryonic development. Evolution 66:17881806.CrossRefGoogle ScholarPubMed
Doguzhaeva, L. A., and Mapes, R. H.. 2015. The body chamber length variations and muscle and mantle attachments in ammonoids. Pp. 545–584 in Klug et al. 2015a.CrossRefGoogle Scholar
Dunstan, A. J., Ward, P. D., and Marshall, N. J.. 2011. Vertical distribution and migration patterns of Nautilus pompilius . PLoS ONE 6:e16311.CrossRefGoogle ScholarPubMed
Ebbighausen, V., Korn, D., and Bockwinkel, J.. 2010. The ammonoids from the Dalle à Merocanites of Timimoun (Late Tournaisian–Early Viséan; Gourara, Algeria). Fossil Record 13:153202.CrossRefGoogle Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41:587638.CrossRefGoogle ScholarPubMed
Gould, S. J. 1971. Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. American Naturalist 105:113136.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontología Electrónica 4:19.Google Scholar
Haniel, C. A. 1915. Die Cephalopoden der Dyas von Timor. Palaontologie von Timor 3:1153.Google Scholar
Hauer, F. R. von. 1847. Neue Cephalopoden aus dem rothen Marmor von Aussee. Haidinger’s naturwissenschaftliche Abhandlung 1:121.Google Scholar
Hauer, F. R. von 1849. Über neue Cephalopoden aus den Marmorschichten von Hallstatt und Aussee. Haidinger’s naturwissenschaftliche Abhandlung 3:126.Google Scholar
Hoffmann, R., and Zachow, S.. 2011. Non-invasive approach to shed new light on the buoyancy business of chambered cephalopods (Mollusca). International Association for Mathematical Geosciences publication. doi: https://doi.org/10.5242.iamg.2011.0163.CrossRefGoogle Scholar
Hoffmann, R., Schultz, J. A., Schellhorn, R., Rybacki, E., Keupp, H., Gerden, S. R., Lemanis, R., and Zachow, S.. 2014. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research. Biogeosciences 11:27212739.CrossRefGoogle Scholar
Huxley, J. S. 1924. Constant differential growth-ratios and their significance. Nature 114:895896.CrossRefGoogle Scholar
Huxley, J. S. 1950. Relative growth and form transformation. Proceedings of the Royal Society of London B 137:465469.Google ScholarPubMed
Huxley, J. S., and Teissier, G.. 1936. Terminology of relative growth. Nature 137:780781.CrossRefGoogle Scholar
Jacobs, D. K. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology 18:203220.CrossRefGoogle Scholar
Jacobs, D. K., and Chamberlain, J. A.. 1996. Buoyancy and hydrodynamics in ammonoids. Pp. 169–224 in Landman et al. 1996a.CrossRefGoogle Scholar
Jacobs, D. K., and Landman, N. H.. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26:101111.CrossRefGoogle Scholar
Jager, M., and Fraaye, R.. 1997. The diet of the Early Toarcian ammonite Harpoceras falciferum . Palaeontology 40:557574.Google Scholar
Kant, R., and Kullmann, J.. 1973. “Knickpunkte” im allometrischen Wachstum von Cephalopoden-Gehäusen. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 142:97114.Google Scholar
Klug, C. 2001. Life-cycles of some Devonian ammonoids. Lethaia 34:215233.Google Scholar
Klug, C., and Jerjen, I.. 2012. The buccal apparatus with radula of a ceratitic ammonoid from the German Middle Triassic. Geobios 45:5765.CrossRefGoogle Scholar
Klug, C., and Korn, D.. 2004. The origin of ammonoid locomotion. Acta Palaeontologica Polonica 49:235242.Google Scholar
Klug, C., and Lehmann, J.. 2015. Soft Part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. Pp. 507–529 in Klug et al. 2015a.CrossRefGoogle Scholar
Klug, C., Riegraf, W., and Lehmann, J.. 2012. Soft-part preservation in heteromorph ammonites from the Cenomanian–Turonian Boundary Event (OAE 2) in north-west Germany. Palaeontology 55:13071331.CrossRefGoogle Scholar
Klug, C., Korn, D., Baets, K. D., Kruta, I., and Mapes, R. H. eds 2015a. Ammonoid paleobiology: from anatomy to ecology. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Klug, C., Zatoń, M., Parent, H., Hostettler, B., and Tajika, A.. 2015b. Mature modifications and sexual dimorphism. Pp. 253–320 in Klug et al. 2015a.CrossRefGoogle Scholar
Klug, C., Baets, K. D., and Korn, D.. 2016a. Exploring the limits of morphospace: ontogeny and ecology of Late Viséan ammonoids from the Tafilalt, Morocco. Acta Palaeontologica Polonica 61:114.CrossRefGoogle Scholar
Klug, C., Frey, L., Korn, D., Jattiot, R., and Rücklin, M.. 2016b. The oldest Gondwanan cephalopod mandibles (Hangenberg Black Shale, Late Devonian) and the mid-Palaeozoic rise of jaws. Palaeontology 59:611629.CrossRefGoogle Scholar
Korn, D. 2000. Morphospace occupation of ammonoids over the Devonian–Carboniferous boundary. Paläontologische Zeitschrift 74:247257.CrossRefGoogle Scholar
Korn, D. 2010. A key for the description of Palaeozoic ammonoids. Fossil Record 13:512.CrossRefGoogle Scholar
Korn, D. 2012. Quantification of ontogenetic allometry in ammonoids. Evolution and Development 14:501514.CrossRefGoogle ScholarPubMed
Korn, D., and Klug, C.. 2003. Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29:329348.2.0.CO;2>CrossRefGoogle Scholar
Korn, D., and Klug, C.. 2007. Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). Pp. 5785. in N. H. Landman, R. A. Davis, and R. H. Mapes, eds. Cephalopods present and past: new insights and fresh perspectives. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Korn, D., and Klug, C.. 2012. Palaeozoic ammonoids—diversity and development of conch morphology. Pp 491534. in E. P. J. A. Talent, ed. Earth and life. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Kröger, B., Vinther, J., and Fuchs, D.. 2011. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. BioEssays 33:602613.CrossRefGoogle ScholarPubMed
Kruta, I., Landman, N. H., Mapes, R., and Pradel, A.. 2014. New insights into the buccal apparatus of the Goniatitina: palaeobiological and phylogenetic implications. Lethaia 47:3848.CrossRefGoogle Scholar
Kruta, I., Landman, N., Rouget, I., Cecca, F., and Tafforeau, P.. 2011. The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:7072.CrossRefGoogle ScholarPubMed
Kullmann, J. 1961. Die Goniatiten des Unterkarbons im Kantabrischen Gebirge (Nordspanien). I. Stratigraphie, Paläontologie der U.O. Goniatitina Hyatt. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 113:219326.Google Scholar
Kullmann, J., and Scheuch, J.. 1970. Wachstums-Änderungen in der Ontogenese paläozoischer Ammonoideen. Lethaia 3:397412.CrossRefGoogle Scholar
Kullmann, J., and Scheuch, J.. 1972. Absolutes und relatives Wachstum bei Ammonoideen. Lethaia 5:129146.CrossRefGoogle Scholar
Landman, N. H., Cochran, J. K., Rye, D. M., Tanabe, K., and Arnold, J. M.. 1994. Early life history of Nautilus: evidence from isotopic analyses of aquarium-reared specimens. Paleobiology 20:4051.CrossRefGoogle Scholar
Landman, N. H., Tanabe, K., and Davis, R. A., eds 1996a. Ammonoid paleobiology. Springer, New York.CrossRefGoogle Scholar
Landman, N. H., Tanabe, K., and Shigeta, Y.. 1996b. Ammonoid embryonic development. Pp. 343–405 in Landman et al. 1996a.CrossRefGoogle Scholar
Lehmann, U. 1971. Jaws, radula, and crop of Arnioceras (Ammonoidea). Palaeontology 14:338341.Google Scholar
Lehmann, U. 1972. Aptychen als Kieferelemente der Ammoniten. Paläontologische Zeitschrift 46:3448.CrossRefGoogle Scholar
Lehmann, U. 1975. Über Nahrung und Ernährungsweise von Ammoniten. Paläontologische Zeitschrift 49:187195.CrossRefGoogle Scholar
Lehmann, U., and Kulicki, C.. 1990. Double function of aptychi (Ammonoidea) as jaw elements and opercula. Lethaia 23:325331.CrossRefGoogle Scholar
Lemanis, R., Korn, D., Zachow, S., Rybacki, E., and Hoffmann, R.. 2016. The evolution and development of cephalopod chambers and their shape. PLoS ONE 11:e0151404.CrossRefGoogle Scholar
Linnaeus, C. 1758. Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis Vol. 10 I. Tomus, ed. Stockholm, Sweden.Google Scholar
Mapes, R. H., and Nützel, A.. 2009. Late Palaeozoic mollusc reproduction: cephalopod egg-laying behavior and gastropod larval palaeobiology. Lethaia 42:341356.CrossRefGoogle Scholar
Morton, N. 1981. Aptychi: the myth of the ammonite operculum. Lethaia 14:5761.CrossRefGoogle Scholar
Naglik, C., Monnet, C., Goetz, S., Kolb, C., De Baets, K., Tajika, A., and Klug, C.. 2015. Growth trajectories of some major ammonoid sub-clades revealed by serial grinding tomography data. Lethaia 48:2946.CrossRefGoogle Scholar
Nixon, M. 1988. The buccal mass of fossil and recent Cephalopoda. In M. R. Clarke, and E. R. Trueman, eds. The Mollusca. Paleontology and Neontology of Cephalopods 12:103122. Academic, London.CrossRefGoogle Scholar
O’Dor, R. K., Wells, J., and Wells, M. J.. 1990. Speed, jet pressure and oxygen consumption relationships in free-swimming Nautilus . Journal of Experimental Biology 154:383396.CrossRefGoogle Scholar
O’Dor, R. K., Forsythe, J., Webber, D. M., Wells, J., and Wells, M. J.. 1993. Activity levels of Nautilus in the wild. Nature 362:626628.CrossRefGoogle Scholar
Okamoto, T. 1996. Theoretical modeling of ammonoid morphology. Pp. 225–251 in Landman et al. 1996a.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M., and Michelson, A.. 1965. Theoretical morphology of the coiled shell. Science 147:12941295.CrossRefGoogle ScholarPubMed
Ritterbush, K. A., and Bottjer, D. J.. 2012. Westermann morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424446.CrossRefGoogle Scholar
Ritterbush, K. A., Hoffmann, R., Lukeneder, A., and De Baets, K.. 2014. Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology 292:229241.CrossRefGoogle Scholar
Saisho, T., and Tanabe, K.. 1985. Notes on the esophagus and stomach-contents of Nautilus pompilius in Fiji. Kagoshima University, Research Center for the South Pacific, Occasional Papers 4:6264.Google Scholar
Saunders, W. B., and Shapiro, E. A.. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:6479.CrossRefGoogle Scholar
Saunders, W. B., and Spinosa, C.. 1978. Sexual dimorphism in Nautilus from Palau. Paleobiology 4:349358.CrossRefGoogle Scholar
Saunders, W. B., and Swan, A. R. H.. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.CrossRefGoogle Scholar
Scharf, F. S., Juanes, F., and Rountree, R. A.. 2000. Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Marine Ecology Progress Series 208:229248.CrossRefGoogle Scholar
Schlotheim, E. F. V. 1813. Beiträge zur Naturgeschichte der Versteinerungen in geognostischer Hinsicht. Pp 3134. in C. C. Leonard, ed. Taschenbuch für die gesamte Mineralogie mit Hinsicht auf die neuesten Entdeckungen. Hermannschen, Frankfurt am Main, Germany.Google Scholar
Shigeno, S., Sasaki, T., Moritaki, T., Kasugai, T., Vecchione, M., and Agata, K.. 2008. Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: evidence from Nautilus embryonic development. Journal of Morphology 269:117.CrossRefGoogle ScholarPubMed
Tajika, A., and Wani, R.. 2011. Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44:287298.Google Scholar
Tajika, A., Naglik, C., Morimoto, N., Pascual-Cebrian, E., Hennhöfer, D., and Klug, C.. 2015. Empirical 3D model of the conch of the Middle Jurassic ammonite microconch Normannites: its buoyancy, the physical effects of its mature modifications and speculations on their function. Historical Biology 27:181191.CrossRefGoogle Scholar
Tanabe, K. 2011. The feeding habits of ammonites. Science 331:3738.CrossRefGoogle ScholarPubMed
Tanabe, K. 2012. Comparative morphology of modern and fossil coleoid jaw apparatuses. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 266:918.CrossRefGoogle Scholar
Tanabe, K., and Fukuda, Y.. 1999. Morphology and function of cephalopod buccal mass. Pp. 245262. in E. Savazzi, ed. Functional morphology of the invertebrate skeleton. Wiley, London.Google Scholar
Tanabe, K., Fukuda, Y., Kanie, Y., and Lehmann, U.. 1980. Rhyncholites and conchorhynchs as calcified jaw elements in some late Cretaceous ammonites. Lethaia 13:157168.CrossRefGoogle Scholar
Tanabe, K., Misaki, A., Landman, N. H., and Kato, T.. 2013. The jaw apparatuses of Cretaceous Phylloceratina (Ammonoidea). Lethaia 46:399408.CrossRefGoogle Scholar
Tanabe, K., Kruta, I., and Landman, N. H.. 2015. Ammonoid buccal mass and jaw apparatus. Pp. 429–484 in Klug et al. 2015a.CrossRefGoogle Scholar
Tendler, A., Mayo, A., and Alon, U.. 2015. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells. BMC Systems Biology 9:1223.CrossRefGoogle ScholarPubMed
Trueman, A. E. 1940. The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal of the Geological Society 96:339383.CrossRefGoogle Scholar
Uyeno, T. A., and Kier, W. M.. 2005. Functional morphology of the cephalopod buccal mass: a novel joint type. Journal of Morphology 264:211222.CrossRefGoogle Scholar
Villier, L., and Korn, D.. 2004. Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264266.CrossRefGoogle ScholarPubMed
Walton, S. A., and Korn, D.. 2017. Iterative ontogenetic development of ammonoid conch shapes from the Devonian through to the Jurassic. Palaeontology 60:703726.CrossRefGoogle Scholar
Walton, S. A., Korn, D., and Klug, C.. 2010. Size distribution of the Late Devonian ammonoid Prolobites: indication for possible mass spawning events. Swiss Journal of Geosciences 103:475494.CrossRefGoogle Scholar
Ward, P., Stone, R., Westermann, G., and Martin, A.. 1977. Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of the cephalopod Nautilus pompilius in the Fiji Islands. Paleobiology 3:377388.CrossRefGoogle Scholar
Weitschat, W., and Bandel, K.. 1991. Organic components in phragmocones of boreal Triassic ammonoids: implications for ammonoid biology. Paläontologische Zeitschrift 65:269303.CrossRefGoogle Scholar
Wells, M. J., and O’Dor, R. K.. 1991. Jet propulsion and the evolution of the cephalopods. Bulletin of Marine Science 49:419432.Google Scholar
Wells, M. J., and Wells, J.. 1982. Ventilatory currents in the mantle of cephalopods. Journal of Experimental Biology 99:315330.CrossRefGoogle Scholar
Wells, M. J., and Wells, J.. 1985. Ventilation and oxygen uptake by Nautilus . Journal of Experimental Biology 118:297312.CrossRefGoogle Scholar
Westermann, G. E. G. 1996. Ammonoid life and habitat. Pp. 607–707 in Landman et al. 1996a.CrossRefGoogle Scholar
Woodward, H. 1885. II.—On some Palæozoic Phyllopod-shields, and on Nebalia and its allies. Geological Magazine 2:345352.CrossRefGoogle Scholar
Wulfen, X. 1793. Abhandlung vom kärnthnerschen pfauenschweifigen Jelmintholoth oder dem sogenannten opalisierenden Muschelmarmor. Palm, Erlangen, Germany.Google Scholar
Young, R. E., and Vecchione, M.. 1996. Analysis of morphology to determine primary sister-taxon relationships within coleoid cephalopods. American Malacological Bulletin 12:91112.Google Scholar